scholarly journals Optimization Design of Energy-Saving Mixed Flow Pump Based on MIGA-RBF Algorithm

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 365
Author(s):  
Rong Lu ◽  
Jianping Yuan ◽  
Guangjuan Wei ◽  
Yong Zhang ◽  
Xiaohui Lei ◽  
...  

Mixed flow pumps driven by hydraulic motors have been widely used in drainage in recent years, especially in emergency pump trucks. Limited by the power of the truck engine, its operating efficiency is one of the key factors affecting the rescue task. In this study, an automated optimization platform was developed to improve the operating efficiency of the mixed flow pump. A three-dimensional hydraulic design, meshing, and computational fluid dynamics (CFD) were executed repeatedly by the main program. The objective function is to maximize hydraulic efficiency under design conditions. Both meridional shape and blade profiles of the impeller and diffuser were optimized at the same time. Based on the CFD results obtained by Optimal Latin Hypercube (OLH) sampling, surrogate models of the head and hydraulic efficiency were built using the Radial Basis Function (RBF) neural network. Finally, the optimal solution was obtained by the Multi- Island Genetic Algorithm (MIGA). The local energy loss was further compared with the baseline scheme using the entropy generation method. Through the regression analysis, it was found that the blade angles have the most significant influence on pump efficiency. The CFD results show that the hydraulic efficiency under design conditions increased by 5.1%. After optimization, the incidence loss and flow separation inside the pump are obviously improved. Additionally, the overall turbulent eddy dissipation and entropy generation were significantly reduced. The experimental results validate that the maximum pump efficiency increased by 4.3%. The optimization platform proposed in this study will facilitate the development of intelligent optimization of pumps.

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 905 ◽  
Author(s):  
Mengcheng Wang ◽  
Yanjun Li ◽  
Jianpin Yuan ◽  
Fan Meng ◽  
Desmond Appiah ◽  
...  

The spanwise distribution of impeller exit circulation (SDIEC) has a significant effect on the impeller performance, therefore, there is a need for its consideration in the optimization design of mixed-flow pumps. In this study, a combination optimization system, including a 3D inverse design method (IDM), computational fluid dynamics (CFD), Latin hypercube sampling (LHS) method, response surface model (RSM), and non-dominated sorting genetic algorithm (NSGA-Ⅱ) was used to improve the performance of the mixed-flow pump after considering the effect of SDIEC on the performance of the impeller. The CFD results confirm the accuracy and credibility of the optimization results because of the good agreement the CFD results established with the experimental measurements. Compared with the original impeller, the pump efficiency of the preferred impeller at 0.8Qdes, 1.0Qdes, and 1.2Qdes improved by 0.63%, 3.39%, and 3.77% respectively. The low-pressure region on the blade surface reduced by 96.92% while the pump head difference was less than 1.84% at the design point. In addition, a comparison of the flow field of the preferred impeller and the original impeller revealed the effect of SDIEC on mixed-flow pump performance improvement and flow mechanism.


Author(s):  
Di Zhu ◽  
Ran Tao ◽  
Ruofu Xiao ◽  
Wei Yang ◽  
Weichao Liu ◽  
...  

Vaned mixed-flow pump is widely used in industrial and agricultural cases. Considering mixed-flow impeller and space guide-vanes, the impeller and guide-vane blade angles need optimization design. In order to conduct optimization, the global dynamic-criterion algorithm with the ability of parallel running, dynamic criterion and escaping from local-best trap was used in this case. Based on numerical simulation and experimental verification, the 18 parameters' combination was optimized using this algorithm to achieve higher-efficiency in a specific flow rate range around the design condition. The numerical results showed that the weighted efficiency increased from 87.32% to 89.26% and the head coefficient decreased from 0.720 to 0.693. The improved efficiency and reduced head under design requirement helps to reduce the shaft power and energy consumption. The optimized blade inlet angle matches the inlet angle and improves the uniformity of flow in the impeller. The impeller outlet angle matches the guide vane inlet angle. Therefore, the flow regime becomes smoother in the rotor stator interaction region. The experimental results verify that the optimized pump efficiency was 85.75%. The measured head coefficient was 0.643 which meets the design requirement. This study provides a successful work for the green design of impeller and guide-vane of mixed-flow pump.


Energy ◽  
2021 ◽  
pp. 121381
Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Ramesh Agarwal

Author(s):  
Akira Goto

The complex three-dimensional flow fields in a mixed-flow pump impeller are investigated by applying the incompressible version of the Dawes’ 3D Navier-Stokes code. The applicability of the code is confirmed by comparison of computations with a variety of experimentally measured jet-wake flow patterns and overall performances at four different tip clearances including the shrouded case. Based on the computations, the interaction mechanism of secondary flows and the formation of jet-wake flow are discussed. In the case of large tip clearances, the reverse flow caused by tip leakage flow is considered to be the reason for the thickening of the casing boundary layer followed by the deterioration of the whole flow field.


2020 ◽  
Vol 14 (1) ◽  
pp. 882-896
Author(s):  
Di Zhu ◽  
Ruofu Xiao ◽  
Zhifeng Yao ◽  
Wei Yang ◽  
Weichao Liu

Author(s):  
S Soundranayagam ◽  
T K Saha

Measurements in a mixed flow pump of non-dimensional specific speed k = 1.89 [ NS = 100 r/min (metric)] are analysed to give loss distribution and local hydraulic efficiencies at different flowrates and values of tip clearance. Fairly close agreement is obtained between the relative flow angles leaving the blading as predicted by simple deviation and slip models and derived from the measurements. The head developed is broken up into two parts: that contributed by Coriolis action and that associated with blade circulation. It is suggested that lift coefficients based on blade circulation are of limited value in selecting blade profiles. The variation of pump efficiency with tip clearance is greater than that reported for centrifugal pumps.


Author(s):  
Hyeonmo Yang ◽  
Sung Kim ◽  
Kyoung-Yong Lee ◽  
Young-Seok Choi ◽  
Jin-Hyuk Kim

One of the best examples of wasted energy is the selection of oversized pumps versus the rated conditions. Oversized pumps are forced to operate at reduced flows, far from their highest efficiency point. An unnecessarily large impeller will produce more flow than required, wasting energy. In the industrial field, trimming the impeller diameter is used more than changing the rotation speed to reduce the head of a pump. In this paper, the impeller trimming method of a mixed-flow pump is defined, and the variation in pump performance by reduction of the impeller diameter was predicted based on computational fluid dynamics. The impeller was trimmed to the same meridional ratio of the hub and shroud, and was compared in five cases. Numerical analysis was performed, including the inlet and outlet pipes in configurations of the mixed-flow pump to be tested. The commercial CFD code, ANSYS CFX-14.5, was used for the numerical analysis, and a three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were used to analyze incompressible turbulence flow. The performance parameters for evaluating the trimmed pump impellers were defined as the total efficiency and total head at the designed flow rate. The numerical and experimental results for the trimmed pump impellers were compared and discussed in this work.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


Author(s):  
Wei Li ◽  
Ramesh K. Agarwal ◽  
Ling Zhou ◽  
Enda Li ◽  
Leilei Ji

Abstract The non-uniform disturbance in the circumferential direction is the main cause for the occurrence of rotating stall in turbomachinery. In order to study the effect of tip clearance leakage flow on rotating stall, the mixed-flow pump models with different tip clearances are numerically simulated, and then the energy performance curves and internal flow structures are obtained and compared. The results show that the computed pump efficiency and the internal flow field of the pump from numerical simulation are in good agreement with the experimental results. A saddle region appears in the energy performance curves of the three tip clearances, and with decrease in tip clearance, the head and efficiency of the mixed-flow pump increase and the critical stall point shifts, and the stable operating range of the mixed-flow pump decreases, which indicates that the mixed-flow pump stalls easily for smaller tip clearance. Under the deep stall condition, the influence of the leakage flow in the end wall area increases gradually with decrease in clearance. For small clearance, the leakage flow moves away from the suction surface to some distance to form a number of leakage vortex strips with the mainstream flow and flows over the leading edge of the next blade and then flows downstream into different flow passages, generating backflow and secondary flow separation at the blade inlet, which seriously damages the spatial structure of the inlet flow. This results in the earlier occurrence of stall. With increase in clearance, the leakage vortex develops along the radial direction towards the middle of the flow channel and large flow separation occurs in the downstream channel, which induces deep stall. For 0.8mm clearance, the whole impeller outlet passage is almost blocked by the backflow of the guide vane inlet, and a deep stall is induced.


2021 ◽  
pp. 1-39
Author(s):  
Wei Li ◽  
Leilei Ji ◽  
Enda Li ◽  
Ling Zhou ◽  
Ramesh Agarwal

Abstract The non-uniform disturbance in circumferential direction is main cause for occurrence of rotating stall in turbomachinery. In order to study the effect of tip clearance leakage flow on rotating stall, mixed-flow pump models with different tip clearances are simulated and energy performance curves and internal flow structures are obtained and compared. The results show that the computed pump efficiency and the internal flow field of the pump are in good agreement with experimental results. A saddle region appears in energy performance curves of three tip clearances and with decrease in tip clearance, the head and efficiency of mixed-flow pump increase and critical stall point shifts and stable operating range of mixed-flow pump decreases, which indicates that mixed-flow pump stalls easily for smaller tip clearance. Under deep stall condition, influence of leakage flow in end wall area increases gradually with decrease in clearance. For small clearance, the leakage flow moves away from suction surface to some distance to form number of leakage vortex strips with mainstream flow and flows over the leading edge of next blade and then flows downstream into different flow passages generating back flow and secondary flow separation at the blade inlet, which seriously damages the spatial structure of inlet flow. This results in earlier occurrence of stall. With increase in clearance, the leakage vortex develops along radial direction towards middle of flow channel and large flow separation occurs in downstream channel which induces deep stall.


Sign in / Sign up

Export Citation Format

Share Document