scholarly journals Vibrational Resonance and Electrical Activity Behavior of a Fractional-Order FitzHugh–Nagumo Neuron System

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 87
Author(s):  
Jia-Wei Mao ◽  
Dong-Liang Hu

Making use of the numerical simulation method, the phenomenon of vibrational resonance and electrical activity behavior of a fractional-order FitzHugh–Nagumo neuron system excited by two-frequency periodic signals are investigated. Based on the definition and properties of the Caputo fractional derivative, the fractional L1 algorithm is applied to numerically simulate the phenomenon of vibrational resonance in the neuron system. Compared with the integer-order neuron model, the fractional-order neuron model can relax the requirement for the amplitude of the high-frequency signal and induce the phenomenon of vibrational resonance by selecting the appropriate fractional exponent. By introducing the time-delay feedback, it can be found that the vibrational resonance will occur with periods in the fractional-order neuron system, i.e., the amplitude of the low-frequency response periodically changes with the time-delay feedback. The weak low-frequency signal in the system can be significantly enhanced by selecting the appropriate time-delay parameter and the fractional exponent. In addition, the original integer-order model is extended to the fractional-order model, and the neuron system will exhibit rich dynamical behaviors, which provide a broader understanding of the neuron system.

2014 ◽  
Vol 28 (16) ◽  
pp. 1450103 ◽  
Author(s):  
Canjun Wang ◽  
Keli Yang ◽  
Shixian Qu

The effects of time delay on the vibrational resonance (VR) in a discrete neuron system with a low-frequency signal and a high-frequency signal are investigated by numerical simulations. The results show that there exists a delay time that optimizes the phase synchronization between the low-frequency input signal and the output signal. VR is induced by the time delay. Furthermore, the time delay can improve the response to a low-frequency input signal. Therefore, the time delay plays a constructive role in the transmission of a low-frequency signal by inducing and enhancing VR.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050025 ◽  
Author(s):  
Wen Guo ◽  
Lijuan Ning

Vibrational resonance is studied in a fractional order quintic oscillator system with delayed feedback. By utilizing the perturbation theory, the theoretical approximate expression of the response amplitude at low-frequency is obtained. In the presence of fractional order and time delay, resonance phenomena are studied in the single-well, double-well and triple-well potentials, respectively. Meanwhile, the good agreement between theoretical prediction and numerical simulation verifies the validity of theoretical analysis. It is found that by altering the fractional order derivative, the occurrence of new resonances is more frequent. As delay increases, the bifurcation point and the equilibrium point change periodically. In addition, fractional order, time delay feedback and high-frequency force amplitude can be appropriately selected to achieve the goal of maximizing the output in different systems. In particular, an intersection that affects the triple-well potential bifurcation point was found.


2014 ◽  
Vol 651-653 ◽  
pp. 2172-2176
Author(s):  
Yun Liang Meng ◽  
Chang Xing Pei ◽  
Dong Wu Li

The optimum vibrational resonance in a time-delay bistable system driven by bihiarmonic signals is discussed in this paper. The theoretically expression for the response amplitude gain of low frequency signal in the time-delay bistable system is deduced, and the effects of time delay parameter on the optimum vibrational resonance peak and the required amplitude of high frequency signal are investigated. It is shown that the optimum vibrational resonance can be achieved by adjusting the high frequency signal amplitude and time delay parameter jointly. Meanwhile, the optimum vibrational resonance appeared periodically with time delay parameter and the period is equal to the period of low-frequency signal. The amplitude of high-frequency signal required for the optimum vibrational resonance can be fixed or varied with different time delay parameter depending on the ratio of the frequencies between biharmonic signals.


Author(s):  
Liangli Yang ◽  
Yongmei Su ◽  
Xinjian Zhuo

The outbreak of COVID-19 has a great impact on the world. Considering that there are different infection delays among different populations, which can be expressed as distributed delay, and the distributed time-delay is rarely used in fractional-order model to simulate the real data, here we establish two different types of fractional order (Caputo and Caputo–Fabrizio) COVID-19 models with distributed time-delay. Parameters are estimated by the least-square method according to the report data of China and other 12 countries. The results of Caputo and Caputo–Fabrizio model with distributed time-delay and without delay, the integer-order model with distributed delay are compared. These show that the fractional-order model can be better in fitting the real data. Moreover, Caputo order is better in short-term time fitting, Caputo–Fabrizio order is better in long-term fitting and prediction. Finally, the influence of several parameters is simulated in Caputo order model, which further verifies the importance of taking strict quarantine measures and paying close attention to the incubation period population.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850082 ◽  
Author(s):  
Jianhua Yang ◽  
Dawen Huang ◽  
Miguel A. F. Sanjuán ◽  
Houguang Liu

We investigate the vibrational resonance by the numerical simulation and theoretical analysis in an overdamped system with fractional order potential nonlinearities. The nonlinearity is a fractional power function with deflection, in which the response amplitude presents vibrational resonance phenomenon for any value of the fractional exponent. The response amplitude of vibrational resonance at low-frequency is deduced by the method of direct separation of slow and fast motions. The results derived from the theoretical analysis are in good agreement with those of numerical simulation. The response amplitude decreases with the increase of the fractional exponent for weak excitations. The amplitude of the high-frequency excitation can induce the vibrational resonance to achieve the optimal response amplitude. For the overdamped systems, the nonlinearity is the crucial and necessary condition to induce vibrational resonance. The response amplitude in the nonlinear system is usually not larger than that in the corresponding linear system. Hence, the nonlinearity is not a sufficient factor to amplify the response to the low-frequency excitation. Furthermore, the resonance may be also induced by only a single excitation acting on the nonlinear system. The theoretical analysis further proves the correctness of the numerical simulation. The results might be valuable in weak signal processing.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Liu ◽  
Wei Chen ◽  
Kaiyu Qin ◽  
Ping Li

This paper is devoted to the consensus problems for a fractional-order multiagent system (FOMAS) with double integral and time delay, the dynamics of which are double-integrator fractional-order model, where there are two state variables in each agent. The consensus problems are investigated for two types of the double-integrator FOMAS with time delay: the double-integrator FOMAS with time delay whose network topology is undirected topology and the double-integrator FOMAS with time delay whose network topology is directed topology with a spanning tree in this paper. Based on graph theory, Laplace transform, and frequency-domain theory of the fractional-order operator, two maximum tolerable delays are obtained to ensure that the two types of the double-integrator FOMAS with time delay can asymptotically reach consensus. Furthermore, it is proven that the results are also suitable for integer-order dynamical model. Finally, the relationship between the speed of convergence and time delay is revealed, and simulation results are presented as a proof of concept.


2013 ◽  
Vol 23 (11) ◽  
pp. 1350189 ◽  
Author(s):  
R. JOTHIMURUGAN ◽  
K. THAMILMARAN ◽  
S. RAJASEKAR ◽  
M. A. F. SANJUÁN

We consider a single Chua's circuit and a system of a unidirectionally coupled n-Chua's circuits driven by a biharmonic signal with two widely different frequencies ω and Ω, where Ω ≫ ω. We show experimental evidence for vibrational resonance in the single Chua's circuit and undamped signal propagation of a low-frequency signal in the system of n-coupled Chua's circuits where only the first circuit is driven by the biharmonic signal. In the single circuit, we illustrate the mechanism of vibrational resonance and the influence of the biharmonic signal parameters on the resonance. In the n(=75)-coupled Chua's circuits enhanced propagation of low-frequency signal is found to occur for a wide range of values of the amplitude of the high-frequency input signal and coupling parameter. The response amplitude of the ith circuit increases with i and attains a saturation. Moreover, the unidirectional coupling is found to act as a low-pass filter.


Sign in / Sign up

Export Citation Format

Share Document