scholarly journals Queuing Theory of Improved Practical Byzantine Fault Tolerant Consensus

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 182
Author(s):  
Fan-Qi Ma ◽  
Rui-Na Fan

In recent years, the use of consensus mechanism to maintain the security of blockchain system has become a considerable concern of the community. Delegated proof of stake (DPoS) and practical Byzantine fault tolerant (PBFT) consensus mechanisms are key technologies in maintaining the security of blockchain system. First, this study proposes a consensus mechanism combining DPoS and PBFT, which can rapidly deal with malicious witness nodes and shorten the time of block verification. Second, the M/PH/1 queuing model is used to analyze the performance of the proposed consensus mechanism, and the performance of the improved practical Byzantine fault tolerant consensus mechanism is evaluated from steady-state conditions and key performance measure of the system. Third, the current study uses the theoretical method of open (Jackson) queuing network, combined with the blockchain consensus process, and provides theoretical analysis with special cases. Lastly, this research utilizes numerical examples to verify the computability of the theoretical results. The analytic method is expected to open a series of potentially promising research in queueing theory of blockchain systems.

2017 ◽  
Vol 2 (02) ◽  
pp. 35
Author(s):  
Resista Vikaliana

Queue is a situation that happen to people, goods, and components that need to wait to get a service. The good quality of service will satisfy the customers and decrease the queue line. Queue often happens in a station especially in weekdays. A long queue line happens in the station is one of the problems that need to be solved. Instead of manual ticket purchasing that served by the operator, today PT KAI Commuter Line also serve ticket purchasing using THB machine. The purpose of this study is to compare the performance of queuing model that happen in Bogor station locket and to determine if the queuing model is efficient by comparing the service standard, between the manual and the one that used THB machine. The method used in this research was descriptive method by using queuing theory calculation. The model of locket queuing using THB machine in Bogor Station is Multi Channel-Multi Phase, in ticket purchasing using THB machine. Besides, in the operator locket service, the queuing model is Single Channel-Single Phase. Both s ticket purchasing service use First In First Out (FIFO) disciple. The maximum amount of the queue line and the source of customers’ arrival are infinite. Based on the value of system performance can be concluded that queuing system and the service given already great and effective (based on the performance measure and probability or passengers’’ chances), passengers who are waiting to buy tickets, either manual or using machine less than 1, or assumed 1 person. From the observation, the use of THB machine decrease the queue line, but need to be socialized because passengers does not know how to use THB machine to buy ticket independently.Keywords: queue, queuing model, commuter line ticket purchasing, Bogor station


Author(s):  
Yili Fang ◽  
Hailong Sun ◽  
Pengpeng Chen ◽  
Jinpeng Huai

Existing efforts mainly use empirical analysis to evaluate the effectiveness of crowdsourcing methods, which is often unreliable across experimental settings. Consequently, it is of great importance to study theoretical methods. This work, for the first time, defines the cost complexity of crowdsourcing, and presents two theorems to compute the cost complexity. Our theorems provide a general theoretical method to model the trade-off between costs and quality, which can be used to evaluate and design crowdsourcing algorithms, and characterize the complexity of crowdsourcing problems. Moreover, following our theorems, we prove a set of corollaries that can obtain existing theoretical results for special cases. We have verified our work theoretically and empirically.


2020 ◽  
Vol 10 (21) ◽  
pp. 7609
Author(s):  
Jungwon Seo ◽  
Deokyoon Ko ◽  
Suntae Kim ◽  
Sooyong Park

Among various consensus algorithms, the Byzantine Fault Tolerance (BFT)-based consensus algorithms are broadly used for private blockchain. However, as BFT-based consensus algorithms are structured for all participants to take part in a consensus process, a scalability issue becomes more noticeable. In this approach, we introduce a consensus coordinator to execute a conditionally BFT-based consensus algorithm by classifying transactions. Transactions are divided into equal and unequal transactions. Moreover, unequal transactions are divided again and classified as common and trouble transactions. After that, a consensus algorithm is only executed for trouble transactions, and BFT-based consensus algorithms can achieve scalability. For evaluating our approach, we carried out three experiments in response to three research questions. By applying our approach to PBFT, we obtained 4.75 times better performance than using only PBFT. In the other experiment, we applied our approach to IBFT of Hyperledger Besu, and our result shows a 61.81% performance improvement. In all experiments depending on the change of the number of blockchain nodes, we obtained the better performance than original BFT-based consensus algorithms; thus, we can conclude that our approach improved the scalability of original BFT-based consensus algorithms. We also showed a correlation between performance and trouble transactions associated with transaction issue intervals and the number of blockchain nodes.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.


Author(s):  
Xiaodong Qi ◽  
Zhihao Chen ◽  
Zhao Zhang ◽  
Cheqing Jin ◽  
Aoying Zhou ◽  
...  

Author(s):  
Xiaokun Wang ◽  
Dong Ni

To scientifically and reasonably evaluate and pre-warn the congestion degree of subway transfer hub, and effectively know the risk of subway passengers before the congestion time coming. We analyzed the passenger flow characteristics of various service facilities in the hub. The congested area of the subway passenger flow interchange hub is divided into queuing area and distribution area. The queuing area congestion evaluation model selects M/M/C and M/G/C based on queuing theory. The queuing model and the congestion evaluation model of the distribution area select the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method. Queue length and waiting time are selected as the evaluation indicators of congestion in the queuing area, and passenger flow, passenger flow density and walking speed are selected as the evaluation indicators of congestion in the distribution area. And then, K-means cluster analysis method is used to analyze the sample data, and based on the selected evaluation indicators and the evaluation model establishes the queuing model of the queuing area and the TOPSIS model of the collection and distribution area. The standard value of the congestion level of various service facilities and the congestion level value of each service facility obtained from the evaluation are used as input to comprehensively evaluate the overall congestion degree of the subway interchange hub. Finally we take the Xi’an Road subway interchange hub in Dalian as empirical research, the data needed for congestion evaluation was obtained through field observations and questionnaires, and the congestion degree of the queue area and the distribution area at different times of the workday was evaluated, and the congestion of each service facility was evaluated. The grade value is used as input, and the TOPSIS method is used to evaluate the degree of congestion in the subway interchange hub, which is consistent with the results of passenger congestion in the questionnaire, which verifies the feasibility of the evaluation model and method.


2012 ◽  
Vol 5 (5) ◽  
pp. 659-691 ◽  
Author(s):  
P. V. P. Sacramento ◽  
M. P. Ferreira ◽  
D. R. C. Oliveira ◽  
G. S. S. A. Melo

Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008) and incorporated the new fib Model Code (2010).


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Kevin Schober ◽  
Jürgen Prestin ◽  
Serhii A. Stasyuk

AbstractIn this paper, we show that certain trigonometric polynomial shearlets which are special cases of directional de la Vallée Poussin-type wavelets are able to detect step discontinuities along boundary curves of periodic characteristic functions. Motivated by recent results for discrete shearlets in two dimensions, we provide lower and upper estimates for the magnitude of the corresponding inner products. In the proof, we use localization properties of trigonometric polynomial shearlets in the time and frequency domain and, among other things, bounds for certain Fresnel integrals. Moreover, we give numerical examples which underline the theoretical results.


Author(s):  
Chao Wang ◽  
Weijie Chen ◽  
Yueru Xu ◽  
Zhirui Ye

For bus service quality and line capacity, one critical influencing factor is bus stop capacity. This paper proposes a bus capacity estimation method incorporating diffusion approximation and queuing theory for individual bus stops. A concurrent queuing system between public transportation vehicles and passengers can be used to describe the scenario of a bus stop. For most of the queuing systems, the explicit distributions of basic characteristics (e.g., waiting time, queue length, and busy period) are difficult to obtain. Therefore, the diffusion approximation method was introduced to deal with this theoretical gap in this study. In this method, a continuous diffusion process was applied to estimate the discrete queuing process. The proposed model was validated using relevant data from seven bus stops. As a comparison, two common methods— Highway Capacity Manual (HCM) formula and M/M/S queuing model (i.e., Poisson arrivals, exponential distribution for bus service time, and S number of berths)—were used to estimate the capacity of the bus stop. The mean absolute percentage error (MAPE) of the diffusion approximation method is 7.12%, while the MAPEs of the HCM method and M/M/S queuing model are 16.53% and 10.23%, respectively. Therefore, the proposed model is more accurate and reliable than the others. In addition, the influences of traffic intensity, bus arrival rate, coefficient of variation of bus arrival headway, service time, coefficient of variation of service time, and the number of bus berths on the capacity of bus stops are explored by sensitivity analyses.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Felix Blank

PurposeRefugee camps can be severely struck by pandemics, like potential COVID-19 outbreaks, due to high population densities and often only base-level medical infrastructure. Fast responding medical systems can help to avoid spikes in infections and death rates as they allow the prompt isolation and treatment of patients. At the same time, the normal demand for emergency medical services has to be dealt with as well. The overall goal of this study is the design of an emergency service system that is appropriate for both types of demand.Design/methodology/approachA spatial hypercube queuing model (HQM) is developed that uses queuing-theory methods to determine locations for emergency medical vehicles (also called servers). Therefore, a general optimization approach is applied, and subsequently, virus outbreaks at various locations of the study areas are simulated to analyze and evaluate the solution proposed. The derived performance metrics offer insights into the behavior of the proposed emergency service system during pandemic outbreaks. The Za'atari refugee camp in Jordan is used as a case study.FindingsThe derived locations of the emergency medical system (EMS) can handle all non-virus-related emergency demands. If additional demand due to virus outbreaks is considered, the system becomes largely congested. The HQM shows that the actual congestion is highly dependent on the overall amount of outbreaks and the corresponding case numbers per outbreak. Multiple outbreaks are much harder to handle even if their cumulative average case number is lower than for one singular outbreak. Additional servers can mitigate the described effects and lead to enhanced resilience in the case of virus outbreaks and better values in all considered performance metrics.Research limitations/implicationsSome parameters that were assumed for simplification purposes as well as the overall model should be verified in future studies with the relevant designers of EMSs in refugee camps. Moreover, from a practitioners perspective, the application of the model requires, at least some, training and knowledge in the overall field of optimization and queuing theory.Practical implicationsThe model can be applied to different data sets, e.g. refugee camps or temporary shelters. The optimization model, as well as the subsequent simulation, can be used collectively or independently. It can support decision-makers in the general location decision as well as for the simulation of stress-tests, like virus outbreaks in the camp area.Originality/valueThe study addresses the research gap in an optimization-based design of emergency service systems for refugee camps. The queuing theory-based approach allows the calculation of precise (expected) performance metrics for both the optimization process and the subsequent analysis of the system. Applied to pandemic outbreaks, it allows for the simulation of the behavior of the system during stress-tests and adds a further tool for designing resilient emergency service systems.


Sign in / Sign up

Export Citation Format

Share Document