scholarly journals Effect of Slip Surface’s Continuity on Slope Dynamic Stability Based on Infinite Slope Model

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 58
Author(s):  
Chuanzheng Liu ◽  
Gang Wang ◽  
Wei Han

The slip surface is an important control structure surface existing in the landslide. It not only directly affects the stability of the slope through the strength, but also affects the stress field by affecting the propagation of the stress wave. Many research results have been made on the influence of non-continuous stress wave propagation in rock and soil mass and the dynamic response to seismic slopes. However, the effect of the continuity of the slip surface on the slope dynamic stability needs further researches. Therefore, in this paper, the effect of slip surface on the slope’s instantaneous safety factor is analyzed by the theoretical method with the infinite slope model. Firstly, three types of slip surface model were established, to realize the change of sliding surface continuity in the infinite slope. Then, based on wave field analysis, the instantaneous safety factor was used to analyze the effect of continuity of slip surface. The results show that with the decreasing of slip surface continuity, the safety factor does not simply increase or decrease, and is related to slope features, incident wave and continuity of slip surface. The safety factor does not decrease monotonically with the increasing of slope angle and thickness of slope body. Moreover, the reflection of slope surface has a great influence on the instantaneous safety factor of the slope. Research results in this paper can provide some references to evaluate the stability of seismic slope, and have an initial understanding of the influence of structural surface continuity on seismic slope engineering.

2011 ◽  
Vol 255-260 ◽  
pp. 1926-1929
Author(s):  
Da Kun Shi ◽  
Yang Song Zhang

Based on geologic condition of one tunnel surrounding rock mass, systematic numerical tests had been carried out to study the stability of surrounding rock mass with different distributions of weak intercalated rock by the FEM software ABAQUS and strength reduction finite element method. Some quantificational results about the stability of surrounding rock mass were summarized. And the safety factor and latent slip surface were worked out. The stability of surrounding rock mass was judged by strength reduction finite element method. According to the analysis above, it’s known that the discrepancy of two rules is small; the safety factor is the lowest when weak intercalated rock in vault, and when at bottom, it’s higher than that of in vault. The conclusion can be used to guide the procedure of construction and ensure the safety.


2012 ◽  
Vol 04 (02) ◽  
pp. 1250017 ◽  
Author(s):  
YING LIU ◽  
G. LU

This paper examines the dynamic stability of an elastic beam on the elastic foundation, in which the stress wave effect is taken into account. Based on Euler–Bernoulli beam theory, the dynamic response of the elastic beam on the elastic foundation to a small transverse perturbation is analyzed. By considering the stress wave propagation in the beam and the constraint of the elastic foundation, the critical bifurcation condition of elastic beam is derived, and the critical axial load of the elastic beam is predicted. Furthermore, the effects of the elastic foundation and the beam length on buckling condition are discussed by using numeric examples. Finally, an approximate solution of critical axial load for elastic beam on the elastic foundation is provided, which may be used to investigate elastic beam buckling problem.


2020 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Twin Hosea Widodo Kristyanto

Pagelaran is one of area in Southern Part of Cianjur. This area has high susceptibility of landslide. One of landslide in Pagelaran, which happened on December 2014, has destroyed 13 houses and damaged vital road along 200 m. A year later, it started to conduct observation regarding the slope. The research aimed to know the role of groundwater level fluctuation in Pagelaran Landslide. The geometry of slope and its slip surface were determined using Electrical Resistivity Tomography. The actual groundwater level was determined by measuring it from surrounding artesian wells. Parameters angle of friction, cohesion, and unit weight were obtained from laboratory tests toward undisturbed soil samples. These data were used for analyzing the actual slope stability condition. Then it was conducted the simulation of slope stability in accordance with fluctuations of groundwater level. The simulation was done by raising the groundwater level with range of 0.5 m. The results showed that the actual slope stability was in critical condition with the value of safety factor 1.044. It also showed that slope stability waned as rising of groundwater level. The value of safety factor was reduced by an average of 0.034 in each 0.5 m up of groundwater level until it became failure (FS<1) when the groundwater level was 0.95 m above the actual position. Therefore, it can be concluded that the position of groundwater level played a role toward the stability of slope in Pagelaran. The rising 0.5 m of groundwater level position will reduce the slope safety factor by 0.034. The slope will become failure if the position of groundwater level rises by 0.95 meter from the actual position. To prevent the rising of groundwater level in rainy season, which can trigger landslide, it can be attached pipes along the slope body to flow the groundwater through them.


2020 ◽  
Vol 145 ◽  
pp. 02049
Author(s):  
Chao Qun Liu ◽  
WenQun Fu ◽  
Wei Luo ◽  
Dan Liu ◽  
Yang Sun

Based on a tunnel through slope of Yongji highway project, relying on ABAQUS geotechnical numerical analysis software, using the appearance of plastic penetration area for instablilty criterion, choosing 11 typical influential factors as independent variables to tunnel stability, the orthogonal test array L50(511) is used to analyze sensitivity of influence factors under evaluating indexes of safety factor to the tunnel stability and the maximum principal tensile on the inner surface of surrounding rock. Research results show that: there are some certain differences between calculation results of safety factor and maximum principal tensile, but overall presentation represents favorable consistency, and the sensitivity of influence factors to the stability of tunnel through unfavorable geological slope can be preferably annlyzed by orthogonal test. The influence of the cohesion of rock c, the horizontal distance d between tunnel centerline and slope toe, the inclination angle of slope α are significant. Comprehensive consideration of safety factor and maximum principal tensile of tunnel circumference is more perfect than one-sided safety factor when performing the analysis of tunnel stability. The research results of this paper can provide reference to design, construction of similar tunnels.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Chao Li ◽  
Tianhe Kang ◽  
Xiaopo Li ◽  
Ligong Li ◽  
Xiaoyu Zhang ◽  
...  

As mining height increases, the influence of coal wall caving on safety production becomes stronger. There is no systematic and effective method to analyse the risk of coal wall caving and its slip caving depth. First, this paper established the Bishop mechanical model of sliding instability of coal wall, and then it deduced the general equation of a safety factor for every slip surface, which can be used to judge the stability of the coal body on the slip surface. Moreover, taking the 8102 workface in the Wulonghu Mine, China, as an example, this paper evaluated the calculation method of slip surface safety factor in detail and obtained the critical slip surface position and the maximum slip depth of a coal wall. Overall, the results showed that the maximum slip depth based on the Bishop strip method is more consistent with the measured data compared with other methods and thus has strong significance and practical engineering value for selecting the most suitable method and its parameters of regulating coal wall caving.


2012 ◽  
Vol 614-615 ◽  
pp. 493-497
Author(s):  
Zhen Bin Chen ◽  
Ji Min Ni ◽  
Jun Liu ◽  
Jin Ge He ◽  
Rui Sun

The experimental program was designed with design of experiment (DoE) technology and a series of experiments were conducted, then an approximate surface model was established with the experimental results and the significant preparation parameters of hydrous ethanol gasoline with different ethanol proportion were optimized with multi-islands genetic algorithms, then the optimal results were verified. The results show that the ethanol proportion, emulsifier type and proportion in the ethanol gasoline has a great influence on the stability; the phase separation temperature of the hydrous ethanol gasoline prepared with the optimal formula (with 25% ethanol proportion, 1.73% emulsifier S+T) is -8°C which is very close to the predicted value. The fuel can maintain stability and with no phase separate for more than 60 days in the room temperature (10°C-30°C).


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-chuan Yang ◽  
Hui-ge Xing ◽  
Xing-guo Yang ◽  
Jia-wen Zhou

The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D) slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.


Sign in / Sign up

Export Citation Format

Share Document