scholarly journals Algorithms for Instance Retrieval and Realization in Fuzzy Ontologies

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 154 ◽  
Author(s):  
Ignacio Huitzil ◽  
Jorge Bernad ◽  
Fernando Bobillo

Fuzzy description logics, the formalism behind fuzzy ontologies, are an important mathematical method with applications in many artificial intelligence scenarios. This paper proposes the first specific algorithms to solve two reasoning tasks with respect to a fuzzy ontology: the instance retrieval and the realization problem. Our algorithms are based on a reduction of the number of optimization problems to solve by merging some of them. Our experimental evaluation shows that the novel algorithm to solve the instance retrieval outperforms the previous algorithm, and that in practice it is common to be able to solve a single optimization problem.

Author(s):  
Han Men ◽  
Robert M. Freund ◽  
Ngoc C. Nguyen ◽  
Joel Saa-Seoane ◽  
Jaime Peraire

Designing phononic crystals by creating frequency bandgaps is of particular interest in the engineering of elastic and acoustic microstructured materials. Mathematically, the problem of optimizing the frequency bandgaps is often nonconvex, as it requires the maximization of the higher indexed eigenfrequency and the minimization of the lower indexed eigenfrequency. A novel algorithm [1] has been previously developed to reformulate the original nonlinear, nonconvex optimization problem to an iteration-specific semidefinite program (SDP). This algorithm separates two consecutive eigenvalues — effectively maximizing bandgap (or bandwidth) — by separating the gap between two orthogonal subspaces, which are comprised columnwise of “important” eigenvectors associated with the eigenvalues being bounded. By doing so, we avoid the need of computation of eigenvalue gradient by computing the gradient of affine matrices with respect to the decision variables. In this work, we propose an even more efficient algorithm based on linear programming (LP). The new formulation is obtained via approximation of the semidefinite cones by judiciously chosen linear bases, coupled with “delayed constraint generation”. We apply the two convex conic formulations, namely, the semidefinite program and the linear program, to solve the bandgap optimization problems. By comparing the two methods, we demonstrate the efficacy and efficiency of the LP-based algorithm in solving the category of eigenvalue bandgap optimization problems.


2020 ◽  
Vol 25 (1) ◽  
pp. 3
Author(s):  
Carlos Ignacio Hernández Castellanos ◽  
Oliver Schütze ◽  
Jian-Qiao Sun ◽  
Sina Ober-Blöbaum

In this paper, we present a novel evolutionary algorithm for the computation of approximate solutions for multi-objective optimization problems. These solutions are of particular interest to the decision-maker as backup solutions since they can provide solutions with similar quality but in different regions of the decision space. The novel algorithm uses a subpopulation approach to put pressure towards the Pareto front while exploring promissory areas for approximate solutions. Furthermore, the algorithm uses an external archiver to maintain a suitable representation in both decision and objective space. The novel algorithm is capable of computing an approximation of the set of interest with good quality in terms of the averaged Hausdorff distance. We underline the statements on some academic problems from literature and an application in non-uniform beams.


2011 ◽  
Vol 148-149 ◽  
pp. 134-137 ◽  
Author(s):  
Pei Wei Tsai ◽  
Jeng Shyang Pan ◽  
Bin Yih Liao ◽  
Ming Jer Tsai ◽  
Vaci Istanda

Inspired by Bat Algorithm, a novel algorithm, which is called Evolved Bat Algorithm (EBA), for solving the numerical optimization problem is proposed based on the framework of the original bat algorithm. By reanalyzing the behavior of bats and considering the general characteristics of whole species of bat, we redefine the corresponding operation to the bats’ behaviors. EBA is a new method in the branch of swarm intelligence for solving numerical optimization problems. In order to analyze the improvement on the accuracy of finding the near best solution and the reduction in the computational cost, three well-known and commonly used test functions in the field of swarm intelligence for testing the accuracy and the performance of the algorithm, are used in the experiments. The experimental results indicate that our proposed method improves at least 99.42% on the accuracy of finding the near best solution and reduces 6.07% in average, simultaneously, on the computational time than the original bat algorithm.


2020 ◽  
Vol 176 (3-4) ◽  
pp. 349-384
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

In this paper we consider the most common TBox and ABox reasoning services for the description logic 𝒟ℒ〈4LQSR,x〉(D) ( 𝒟 ℒ D 4,× , for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment 4LQSR. 𝒟 ℒ D 4,× is a very expressive description logic. It combines the high scalability and efficiency of rule languages such as the SemanticWeb Rule Language (SWRL) with the expressivity of description logics. In fact, among other features, it supports Boolean operations on concepts and roles, role constructs such as the product of concepts and role chains on the left-hand side of inclusion axioms, role properties such as transitivity, symmetry, reflexivity, and irreflexivity, and data types. We further provide a KE-tableau-based procedure that allows one to reason on the main TBox and ABox reasoning tasks for the description logic 𝒟 ℒ D 4,× . Our algorithm is based on a variant of the KE-tableau system for sets of universally quantified clauses, where the KE-elimination rule is generalized in such a way as to incorporate the γ-rule. The novel system, called KEγ-tableau, turns out to be an improvement of the system introduced in [1] and of standard first-order KE-tableaux [2]. Suitable benchmark test sets executed on C++ implementations of the three mentioned systems show that in several cases the performances of the KEγ-tableau-based reasoner are up to about 400% better than the ones of the other two systems.


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Author(s):  
S Yoo ◽  
C-G Park ◽  
S-H You ◽  
B Lim

This article presents a new methodology to generate optimal trajectories in controlling an automated excavator. By parameterizing all the actuator displacements with B-splines of the same order and with the same number of control points, the coupled actuator limits, associated with the maximum pump flowrate, are described as the finite-dimensional set of linear constraints to the motion optimization problem. Several weighting functions are introduced on the generalized actuator torque so that the solution to each optimization problems contains the physical meaning. Numerical results showing that the generated motions of the excavator are fairly smooth and effectively save energy, which can prevent mechanical wearing and possibly save fuel consumption, are presented. A typical operator's manoeuvre from experiments is referred to bring out the standing features of the optimized motion.


2021 ◽  
Vol 12 (4) ◽  
pp. 81-100
Author(s):  
Yao Peng ◽  
Zepeng Shen ◽  
Shiqi Wang

Multimodal optimization problem exists in multiple global and many local optimal solutions. The difficulty of solving these problems is finding as many local optimal peaks as possible on the premise of ensuring global optimal precision. This article presents adaptive grouping brainstorm optimization (AGBSO) for solving these problems. In this article, adaptive grouping strategy is proposed for achieving adaptive grouping without providing any prior knowledge by users. For enhancing the diversity and accuracy of the optimal algorithm, elite reservation strategy is proposed to put central particles into an elite pool, and peak detection strategy is proposed to delete particles far from optimal peaks in the elite pool. Finally, this article uses testing functions with different dimensions to compare the convergence, accuracy, and diversity of AGBSO with BSO. Experiments verify that AGBSO has great localization ability for local optimal solutions while ensuring the accuracy of the global optimal solutions.


Janus Head ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 53-66
Author(s):  
Hub Zwart ◽  

This paper subjects Dan Brown’s most recent novel Origin to a philosophical reading. Origin is regarded as a literary window into contemporary technoscience, inviting us to explore its transformative momentum and disruptive impact, focusing on the cultural significance of artificial intelligence and computer science: on the way in which established world-views are challenged by the incessant wave of scientific discoveries made possible by super-computation. While initially focusing on the tension between science and religion, the novel’s attention gradually shifts to the increased dependence of human beings on smart technologies and artificial (or even “synthetic”) intelligence. Origin’s message, I will argue, reverberates with Oswald Spengler’s The Decline of the West, which aims to outline a morphology of world civilizations. Although the novel starts with a series of oppositions, most notably between religion and science, the eventual tendency is towards convergence, synthesis and sublation, exemplified by Sagrada Família as a monumental symptom of this transition. Three instances of convergence will be highlighted, namely the convergence between science and religion, between humanity and technology and between the natural sciences and the humanities.


2021 ◽  
Vol 12 (4) ◽  
pp. 98-116
Author(s):  
Noureddine Boukhari ◽  
Fatima Debbat ◽  
Nicolas Monmarché ◽  
Mohamed Slimane

Evolution strategies (ES) are a family of strong stochastic methods for global optimization and have proved their capability in avoiding local optima more than other optimization methods. Many researchers have investigated different versions of the original evolution strategy with good results in a variety of optimization problems. However, the convergence rate of the algorithm to the global optimum stays asymptotic. In order to accelerate the convergence rate, a hybrid approach is proposed using the nonlinear simplex method (Nelder-Mead) and an adaptive scheme to control the local search application, and the authors demonstrate that such combination yields significantly better convergence. The new proposed method has been tested on 15 complex benchmark functions and applied to the bi-objective portfolio optimization problem and compared with other state-of-the-art techniques. Experimental results show that the performance is improved by this hybridization in terms of solution eminence and strong convergence.


Sign in / Sign up

Export Citation Format

Share Document