scholarly journals Stable Finite-Difference Methods for Elastic Wave Modeling with Characteristic Boundary Conditions

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1039
Author(s):  
Jiawei Liu ◽  
Wen-An Yong ◽  
Jianxin Liu ◽  
Zhenwei Guo

In this paper, a new stable finite-difference (FD) method for solving elastodynamic equations is presented and applied on the Biot and Biot/squirt (BISQ) models. This method is based on the operator splitting theory and makes use of the characteristic boundary conditions to confirm the overall stability which is demonstrated with the energy method. Through the stability analysis, it is showed that the stability conditions are more generous than that of the traditional algorithms. It allows us to use the larger time step τ in the procedures for the elastic wave field solutions. This context also provides and compares the computational results from the stable Biot and unstable BISQ models. The comparisons show that this FD method can apply a new numerical technique to detect the stability of the seismic wave propagation theories. The rigorous theoretical stability analysis with the energy method is presented and the stable/unstable performance with the numerical solutions is also revealed. The truncation errors and the detailed stability conditions of the FD methods with different characteristic boundary conditions have also been evaluated. Several applications of the constructed FD methods are presented. When the stable FD methods to the elastic wave models are applied, an initial stability test can be established. Further work is still necessary to improve the accuracy of the method.

1977 ◽  
Vol 17 (01) ◽  
pp. 79-91 ◽  
Author(s):  
D.W. Peaceman

Abstract The usual linearized stability analysis of the finite-difference solution for two-phase flow in porous media is not delicate enough to distinguish porous media is not delicate enough to distinguish between the stability of equations using semi-implicit mobility and those using completely implicit mobility. A nonlinear stability analysis is developed and applied to finite-difference equations using an upstream mobility that is explicit, completely implicit, or semi-implicit. The nonlinear analysis yields a sufficient (though not necessary) condition for stability. The results for explicit and completely implicit mobilities agree with those obtained by the standard linearized analysis; in particular, use of completely implicit mobility particular, use of completely implicit mobility results in unconditional stability. For semi-implicit mobility, the analysis shows a mild restriction that generally will not be violated in practical reservoir simulations. Some numerical results that support the theoretical conclusions are presented. Introduction Early finite-difference, Multiphase reservoir simulators using explicit mobility were found to require exceedingly small time steps to solve certain types of problems, particularly coning and gas percolation. Both these problems are characterized percolation. Both these problems are characterized by regions of high flow velocity. Coats developed an ad hoc technique for dealing with gas percolation, but a more general and highly successful approach for dealing with high-velocity problems has been the use of implicit mobility. Blair and Weinaug developed a simulator using completely implicit mobility that greatly relaxed the time-step restriction. Their simulator involved iterative solution of nonlinear difference equations, which considerably increased the computational work per time step. Three more recent papers introduced the use of semi-implicit mobility, which proved to be greatly superior to the fully implicit method with respect to computational effort, ease of use, and maximum permissible time-step size. As a result, semi-implicit mobility has achieved wide use throughout the industry. However, this success has been pragmatic, with little or no theoretical work to justify its use. In this paper, we attempt to place the use of semi-implicit mobility on a sounder theoretical foundation by examining the stability of semi-implicit difference equations. The usual linearized stability analysis is not delicate enough to distinguish between the semi-implicit and completely implicit difference equation. A nonlinear stability analysis is developed that permits the detection of some differences between the stability of difference equations using implicit mobility and those using semi-implicit mobility. DIFFERENTIAL EQUATIONS The ideas to be developed may be adequately presented using the following simplified system: presented using the following simplified system: horizontal, one-dimensional, two-phase, incompressible flow in homogeneous porous media, with zero capillary pressure. A variable cross-section is included so that a variable flow velocity may be considered. The basic differential equations are (1) (2) The total volumetric flow rate is given by (3) Addition of Eqs. 1 and 2 yields =O SPEJ P. 79


2017 ◽  
Vol 29 (2) ◽  
pp. 143-151 ◽  
Author(s):  
TMAK Azad ◽  
LS Andallah

The paper studies stability analysis for two standard finite difference schemes FTBSCS (forward time backward space and centered space) and FTCS (forward time and centered space). One-dimensional advection diffusion equation is solved by using the schemes with appropriate initial and boundary conditions. Numerical experiments are performed to verify the stability results obtained in this study. It is found that FTCS scheme gives better point-wise solutions than FTBSCS in terms of time step selection.Bangladesh J. Sci. Res. 29(2): 143-151, December-2016


Author(s):  
Bo Xiao ◽  
Hak-Keung Lam ◽  
Zhixiong Zhong

AbstractThe main challenge of the stability analysis for general polynomial control systems is that non-convex terms exist in the stability conditions, which hinders solving the stability conditions numerically. Most approaches in the literature impose constraints on the Lyapunov function candidates or the non-convex related terms to circumvent this problem. Motivated by this difficulty, in this paper, we confront the non-convex problem directly and present an iterative stability analysis to address the long-standing problem in general polynomial control systems. Different from the existing methods, no constraints are imposed on the polynomial Lyapunov function candidates. Therefore, the limitations on the Lyapunov function candidate and non-convex terms are eliminated from the proposed analysis, which makes the proposed method more general than the state-of-the-art. In the proposed approach, the stability for the general polynomial model is analyzed and the original non-convex stability conditions are developed. To solve the non-convex stability conditions through the sum-of-squares programming, the iterative stability analysis is presented. The feasible solutions are verified by the original non-convex stability conditions to guarantee the asymptotic stability of the general polynomial system. The detailed simulation example is provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed approach is more capable to find feasible solutions for the general polynomial control systems when compared with the existing ones.


Geophysics ◽  
2021 ◽  
pp. 1-76
Author(s):  
Chunli Zhang ◽  
Wei Zhang

The finite-difference method (FDM) is one of the most popular numerical methods to simulate seismic wave propagation in complex velocity models. If a uniform grid is applied in the FDM for heterogeneous models, the grid spacing is determined by the global minimum velocity to suppress dispersion and dissipation errors in the numerical scheme, resulting in spatial oversampling in higher-velocity zones. Then, the small grid spacing dictates a small time step due to the stability condition of explicit numerical schemes. The spatial oversampling and reduced time step will cause unnecessarily inefficient use of memory and computational resources in simulations for strongly heterogeneous media. To overcome this problem, we propose to use the adaptive mesh refinement (AMR) technique in the FDM to flexibly adjust the grid spacing following velocity variations. AMR is rarely utilized in acoustic wave simulations with the FDM due to the increased complexity of implementation, including its data management, grid generation and computational load balancing on high-performance computing platforms. We implement AMR for 2D acoustic wave simulation in strongly heterogeneous media based on the patch approach with the FDM. The AMR grid can be automatically generated for given velocity models. To simplify the implementation, we employ a well-developed AMR framework, AMReX, to carry out the complex grid management. Numerical tests demonstrate the stability, accuracy level and efficiency of the AMR scheme. The computation time is approximately proportional to the number of grid points, and the overhead due to the wavefield exchange and data structure is small.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


Author(s):  
İhsan Çelikkaya

Abstract In this study, the numerical solutions of the modified Fornberg–Whitham (mFW) equation, which describes immigration of the solitary wave and peakon waves with discontinuous first derivative at the peak, have been obtained by the collocation finite element method using quintic trigonometric B-spline bases. Although there are solutions of this equation by semi-analytical and analytical methods in the literature, there are very few studies on the solution of the equation by numerical methods. Any linearization technique has not been used while applying the method. The stability analysis of the applied method is examined by the von-Neumann Fourier series method. To show the performance of the method, we have considered three test problems with nonhomogeneous boundary conditions having analytical solutions. The error norms L 2 and L ∞ are calculated to demonstrate the accuracy and efficiency of the presented numerical scheme.


2011 ◽  
Vol 110-116 ◽  
pp. 3184-3190
Author(s):  
Necdet Bildik ◽  
Duygu Dönmez Demir

This paper deals with the solutions of lateral heat loss equation by using collocation method with cubic B-splines finite elements. The stability analysis of this method is investigated by considering Fourier stability method. The comparison of the numerical solutions obtained by using this method with the analytic solutions is given by the tables and the figure.


2014 ◽  
Vol 24 (3) ◽  
pp. 635-646 ◽  
Author(s):  
Deqiong Ding ◽  
Qiang Ma ◽  
Xiaohua Ding

Abstract In this paper, a NonStandard Finite Difference (NSFD) scheme is constructed, which can be used to determine numerical solutions for an epidemic model with vaccination. Here the NSFD method is employed to derive a set of difference equations for the epidemic model with vaccination. We show that difference equations have the same dynamics as the original differential system, such as the positivity of the solutions and the stability of the equilibria, without being restricted by the time step. Our proof of global stability utilizes the method of Lyapunov functions. Numerical simulation illustrates the effectiveness of our results


Sign in / Sign up

Export Citation Format

Share Document