scholarly journals An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1215
Author(s):  
James Allen ◽  
Ari Halberstadt ◽  
John Powers ◽  
Nael H. El-Farra

This work considers the problem of reducing the cost of electricity to a grid-connected commercial building that integrates on-site solar energy generation, while at the same time reducing the impact of the building loads on the grid. This is achieved through local management of the building’s energy generation-load balance in an effort to increase the feasibility of wide-scale deployment and integration of solar power generation into commercial buildings. To realize this goal, a simulated building model that accounts for on-site solar energy generation, battery storage, electrical vehicle (EV) charging, controllable lighting, and air conditioning is considered, and a supervisory model predictive control (MPC) system is developed to coordinate the building’s generation, loads and storage systems. The main aim of this optimization-based approach is to find a reasonable solution that minimizes the economic cost to the electricity user, while at the same time reducing the impact of the building loads on the grid. To assess this goal, three objective functions are selected, including the peak building load, the net building energy use, and a weighted sum of both the peak load and net energy use. Based on these objective functions, three MPC systems are implemented on the simulated building under scenarios with varying degrees of weather forecasting accuracy. The peak demand, energy cost, and electricity cost are compared for various forecast scenarios for each MPC system formulation, and evaluated in relation to a rules-based control scheme. The MPC systems tested the rules-based scheme based on simulations of a month-long electricity consumption. The performance differences between the individual MPC system formulations are discussed in the context of weather forecasting accuracy, operational costs, and how these impact the potential of on-site solar generation and potential wide-spread solar penetration.

2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


2021 ◽  
Vol 13 (12) ◽  
pp. 6753
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison

As the population of urban areas continues to grow, and construction of multi-unit developments surges in response, building energy use demand has increased accordingly and solutions are needed to offset electricity used from the grid. Renewable energy systems in the form of microgrids, and grid-connected solar PV-storage are considered primary solutions for powering residential developments. The primary objectives for commissioning such systems include significant electricity cost reductions and carbon emissions abatement. Despite the proliferation of renewables, the uptake of solar and battery storage systems in communities and multi-residential buildings are less researched in the literature, and many uncertainties remain in terms of providing an optimal solution. This literature review uses the rapid review technique, an industry and societal issue-based version of the systematic literature review, to identify the case for microgrids for multi-residential buildings and communities. The study describes the rapid review methodology in detail and discusses and examines the configurations and methodologies for microgrids.


2021 ◽  
Author(s):  
Jelena Garic

As cities grow, strategies for how and where to accommodate growth are increasingly important. Similarly, renewable energy is gaining importance as a means of reducing our dependency on fossil fuels and other non-renewables, reducing greenhouse gas emissions and pollution, and creating energy resiliency at a local level. The purpose of this Major Research Project is to determine the impact the Mid-Rise Building Performance Standards, from the City of Toronto’s 2010 Avenues and Mid-Rise Building Study, have on solar access and to quantify the potential of energy generation using solar photovoltaic systems along the Avenues in Toronto. What impact do the Performance Standards have on solar access to mid-rise buildings along the Avenues? The research concludes that low-podium built form provides the most benefit for the study area – Eglinton Avenue West, at Bathurst Street: the porous street-wall built-form, as outlined in the Mid-Rise Building Performance Standards, provides the highest solar energy generation and energy savings potential.


2021 ◽  
Author(s):  
Jelena Garic

As cities grow, strategies for how and where to accommodate growth are increasingly important. Similarly, renewable energy is gaining importance as a means of reducing our dependency on fossil fuels and other non-renewables, reducing greenhouse gas emissions and pollution, and creating energy resiliency at a local level. The purpose of this Major Research Project is to determine the impact the Mid-Rise Building Performance Standards, from the City of Toronto’s 2010 Avenues and Mid-Rise Building Study, have on solar access and to quantify the potential of energy generation using solar photovoltaic systems along the Avenues in Toronto. What impact do the Performance Standards have on solar access to mid-rise buildings along the Avenues? The research concludes that low-podium built form provides the most benefit for the study area – Eglinton Avenue West, at Bathurst Street: the porous street-wall built-form, as outlined in the Mid-Rise Building Performance Standards, provides the highest solar energy generation and energy savings potential.


MRS Advances ◽  
2018 ◽  
Vol 3 (34-35) ◽  
pp. 2063-2073
Author(s):  
R. K. Rabasoma ◽  
D. D. Serame ◽  
O.T. Masoso

ABSTRACTBefore 2008, it was common knowledge around the world that insulation always saved air conditioning energy in buildings. In 2008 a phenomenon called anti-insulation was brought to light by Masoso & Grobler. They demonstrated that there are instances when insulation materials in a building directly increase building energy use. Researchers around the world then echoed the message. Recent work by some of the authors investigated the anti-insulation phenomenon in summer and winter for both hot climatic regions (Botswana) and cold climatic regions (Canada). Their study concluded that there is still a mystery of exaggerated sources of heat inside the building aggravating the anti-insulation phenomenon. They hypothesized that incident solar radiation through the windows could be one of the causes. This paper therefore focuses on eliminating direct solar radiation through windows by applying external shadings on a previously anti-insulation building. The energy saved is evaluated and the possible reversal of anti-insulation studied. The study is useful to energy policy makers and the building industry as it showcases the existence of a possible silent killer (anti-insulation) and demonstrates that investing large sums of money on insulation in buildings may not be the most economic thing to do in building design decisions.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Byung Chang Kwag ◽  
Moncef Krarti

A transient three-dimensional numerical solution is developed to analyze the thermal performance of thermo-active foundations used to heat and cool commercial buildings. Using laboratory testing data, the numerical solution is validated and used to carry out a sensitivity analysis to assess the most important design and operating parameters that affect the thermal performance of thermo-active foundations. It is found that the foundation depth, the shank space, the fluid flow rate, and the number of U-tube loops in each foundation pile are the main parameters that affect the thermal performance of a thermo-active foundation system. Based on the validated numerical solution, thermal response factors for a thermo-active foundation are developed, and implemented into a detailed building energy simulation program. These thermal response factors are then used to estimate the impact of installing thermo-active foundations on the total energy use of typical office buildings in representative US climates.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2502
Author(s):  
Jacqueline Nicole Adams ◽  
Zsófia Deme Bélafi ◽  
Miklós Horváth ◽  
János Balázs Kocsis ◽  
Tamás Csoknyai

The goal of this literature review was to outline the research currently conducted on smart meter (SM) adoption and its connection to building occupant behavior to better understand both SM technology and SM customers. We compiled our findings from the existing literature and developed a holistic understanding of the socio-demographic factors that lead to more or less energy use, the methods used to group and cluster occupants on the basis of energy use, how occupant energy use profiles are developed, and which socio-psychological determinants may influence SM adoption. Our results highlight 11 demographic variables that impact building energy use, find 9 methods commonly used to profile occupants on the basis of energy usage, and highlight 13 socio-psychological variables than can be utilized to better understand SM adoption intentions. The review findings two major deficiencies in the existing literature. First, this review highlights the lack of existing interdisciplinary research that combines occupant behavior with SM data and a clear socio-psychological framework. Second, this review underscores certain data limitations in existing SM research, with most research being conducted only on residential or office buildings and geographically in North America or Western Europe. Final policy recommendations center on increased need for interdisciplinary SM research and the need for an expanded understanding of occupant behavior and SM research across different geographies.


2019 ◽  
Author(s):  
Ulrike Passe ◽  
Jan Thompson ◽  
Baskar Ganapathysubramanian ◽  
Boshun Gao ◽  
Breanna Marmur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document