scholarly journals Possibilities of Using Kalman Filters in Indoor Localization

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1564
Author(s):  
Katerina Fronckova ◽  
Pavel Prazak

Kalman filters are a set of algorithms based on the idea of a filter described by Rudolf Emil Kalman in 1960. Kalman filters are used in various application domains, including localization, object tracking, and navigation. The text provides an overview and discussion of the possibilities of using Kalman filters in indoor localization. The problems of static localization and localization of dynamically moving objects are investigated, and corresponding stochastic models are created. Three algorithms for static localization and one algorithm for dynamic localization are described and demonstrated. All algorithms are implemented in the MATLAB software, and then their performance is tested on Bluetooth Low Energy data from a real indoor environment. The results show that by using Kalman filters, the mean localization error of two meters can be achieved, which is one meter less than in the case of using the standard fingerprinting technique. In general, the presented principles of Kalman filters are applicable in connection with various technologies and data of various nature.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4742
Author(s):  
Jesus D. Ceron ◽  
Felix Kluge ◽  
Arne Küderle ◽  
Bjoern M. Eskofier ◽  
Diego M. López

Indoor location estimation is crucial to provide context-based assistance in home environments. In this study, a method for simultaneous indoor pedestrian localization and house mapping is proposed and evaluated. The method fuses a person’s movement data from an Inertial Measurement Unit (IMU) with proximity and activity-related data from Bluetooth Low-Energy (BLE) beacons deployed in the indoor environment. The person’s and beacons’ localization is performed simultaneously using a combination of particle and Kalman Filters. We evaluated the method using data from eight participants who performed different activities in an indoor environment. As a result, the average participant’s localization error was 1.05 ± 0.44 m, and the average beacons’ localization error was 0.82 ± 0.24 m. The proposed method is able to construct a map of the indoor environment by localizing the BLE beacons and simultaneously locating the person. The results obtained demonstrate that the proposed method could point to a promising roadmap towards the development of simultaneous localization and home mapping system based only on one IMU and a few BLE beacons. To the best of our knowledge, this is the first method that includes the beacons’ data movement as activity-related events in a method for pedestrian Simultaneous Localization and Mapping (SLAM).


2013 ◽  
Vol 660 ◽  
pp. 190-195
Author(s):  
Zi Cheng Ren ◽  
Jaeho Choi ◽  
M. Ahmed ◽  
Jae Ho Choi

Object tracking has been researched for many years as an important topic in machine learning, robot vision and many other fields. Over the years, various tracking methods are proposed and developed in order to gain a better tracking effect. Among them the mean-shift algorithm turns out to be robust and accurate compared other algorithms after different kinds of tests. But due to its limitations, the changes in scale and rotational motion of an object cannot be effectively processed. This problem occurs when the object of interest moves towards or away from the video camera. Improving over the previously proposed method such as scale and orientation adaptive mean shift tracking, which performs well with scaling change but not for the rotation, in this paper, the proposed method modifies the continuously adaptive mean shift tracking method so that it can handle effectively for changes in size and rotation in motion, simultaneously. The simulation results yield a successful tracking of moving objects even when the object undergoes scaling in size and rotation in motion in comparison to the conventional ones.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lea Boßmann ◽  
Sören Petrat ◽  
Robert Seiringer

Abstract We consider a system of N bosons in the mean-field scaling regime for a class of interactions including the repulsive Coulomb potential. We derive an asymptotic expansion of the low-energy eigenstates and the corresponding energies, which provides corrections to Bogoliubov theory to any order in $1/N$ .


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3955
Author(s):  
Jung-Cheng Yang ◽  
Chun-Jung Lin ◽  
Bing-Yuan You ◽  
Yin-Long Yan ◽  
Teng-Hu Cheng

Most UAVs rely on GPS for localization in an outdoor environment. However, in GPS-denied environment, other sources of localization are required for UAVs to conduct feedback control and navigation. LiDAR has been used for indoor localization, but the sampling rate is usually too low for feedback control of UAVs. To compensate this drawback, IMU sensors are usually fused to generate high-frequency odometry, with only few extra computation resources. To achieve this goal, a real-time LiDAR inertial odometer system (RTLIO) is developed in this work to generate high-precision and high-frequency odometry for the feedback control of UAVs in an indoor environment, and this is achieved by solving cost functions that consist of the LiDAR and IMU residuals. Compared to the traditional LIO approach, the initialization process of the developed RTLIO can be achieved, even when the device is stationary. To further reduce the accumulated pose errors, loop closure and pose-graph optimization are also developed in RTLIO. To demonstrate the efficacy of the developed RTLIO, experiments with long-range trajectory are conducted, and the results indicate that the RTLIO can outperform LIO with a smaller drift. Experiments with odometry benchmark dataset (i.e., KITTI) are also conducted to compare the performance with other methods, and the results show that the RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time delay and greater position accuracy.


Author(s):  
Louis Lecrosnier ◽  
Redouane Khemmar ◽  
Nicolas Ragot ◽  
Benoit Decoux ◽  
Romain Rossi ◽  
...  

This paper deals with the development of an Advanced Driver Assistance System (ADAS) for a smart electric wheelchair in order to improve the autonomy of disabled people. Our use case, built from a formal clinical study, is based on the detection, depth estimation, localization and tracking of objects in wheelchair’s indoor environment, namely: door and door handles. The aim of this work is to provide a perception layer to the wheelchair, enabling this way the detection of these keypoints in its immediate surrounding, and constructing of a short lifespan semantic map. Firstly, we present an adaptation of the YOLOv3 object detection algorithm to our use case. Then, we present our depth estimation approach using an Intel RealSense camera. Finally, as a third and last step of our approach, we present our 3D object tracking approach based on the SORT algorithm. In order to validate all the developments, we have carried out different experiments in a controlled indoor environment. Detection, distance estimation and object tracking are experimented using our own dataset, which includes doors and door handles.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2894
Author(s):  
Minh-Quan Dao ◽  
Vincent Frémont

Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an object detector and a data association algorithm which establishes track-to-detection correspondence. While 3D object detection has been actively researched, association algorithms for 3D MOT has settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the Hungarian algorithm. In this paper, we adapt a two-stage data association method which was successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes validation set and 0.365 AMOTA (at level 2) in Waymo test set.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Author(s):  
Haishu Ma ◽  
Zongzheng Ma ◽  
Lixia Li ◽  
Ya Gao

Due to the proliferation of the IoT devices, indoor location-based service is bringing huge business values and potentials. The positioning accuracy is restricted by the variability and complexity of the indoor environment. Radio Frequency Identification (RFID), as a key technology of the Internet of Things, has became the main research direction in the field of indoor positioning because of its non-contact, non-line-of-sight and strong anti-interference abilities. This paper proposes the deep leaning approach for RFID based indoor localization. Since the measured Received Signal Strength Indicator (RSSI) can be influenced by many indoor environment factors, Kalman filter is applied to erase the fluctuation. Furthermore, linear interpolation is adopted to increase the density of the reference tags. In order to improve the processing ability of the fingerprint database, deep neural network is adopted together with the fingerprinting method to optimize the non-linear mapping between fingerprints and indoor coordinates. The experimental results show that the proposed method achieves high accuracy with a mean estimation error of 0.347 m.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4462 ◽  
Author(s):  
Paolo Baronti ◽  
Paolo Barsocchi ◽  
Stefano Chessa ◽  
Fabio Mavilia ◽  
Filippo Palumbo

Indoor localization has become a mature research area, but further scientific developments are limited due to the lack of open datasets and corresponding frameworks suitable to compare and evaluate specialized localization solutions. Although several competitions provide datasets and environments for comparing different solutions, they hardly consider novel technologies such as Bluetooth Low Energy (BLE), which is gaining more and more importance in indoor localization due to its wide availability in personal and environmental devices and to its low costs and flexibility. This paper contributes to cover this gap by: (i) presenting a new indoor BLE dataset; (ii) reviewing several, meaningful use cases in different application scenarios; and (iii) discussing alternative uses of the dataset in the evaluation of different positioning and navigation applications, namely localization, tracking, occupancy and social interaction.


Sign in / Sign up

Export Citation Format

Share Document