scholarly journals Q-Rung Probabilistic Dual Hesitant Fuzzy Sets and Their Application in Multi-Attribute Decision-Making

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1574
Author(s):  
Li Li ◽  
Hegong Lei ◽  
Jun Wang

The probabilistic dual hesitant fuzzy sets (PDHFSs), which are able to consider multiple membership and non-membership degrees as well as their probabilistic information, provide decision experts a flexible manner to evaluate attribute values in complicated realistic multi-attribute decision-making (MADM) situations. However, recently developed MADM approaches on the basis of PDHFSs still have a number of shortcomings in both evaluation information expression and attribute values integration. Hence, our aim is to evade these drawbacks by proposing a new decision-making method. To realize this purpose, first of all a new fuzzy information representation manner is introduced, called q-rung probabilistic dual hesitant fuzzy sets (q-RPDHFSs), by capturing the probability of each element in q-rung dual hesitant fuzzy sets. The most attractive character of q-RPDHFSs is that they give decision experts incomparable degree of freedom so that attribute values of each alternative can be appropriately depicted. To make the utilization of q-RPDHFSs more convenient, we continue to introduce basic operational rules, comparison method and distance measure of q-RPDHFSs. When considering to integrate attribute values in q-rung probabilistic dual hesitant fuzzy MADM problems, we propose a series of novel operators based on the power average and Muirhead mean. As displayed in the main text, the new operators exhibit good performance and high efficiency in information fusion process. At last, a new MADM method with q-RPDHFSs and its main steps are demonstrated in detail. Its performance in resolving practical decision-making situations is studied by examples analysis.

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 999 ◽  
Author(s):  
Jin ◽  
Wu ◽  
Sun ◽  
Zeng ◽  
Luo ◽  
...  

As a generalization of several fuzzy tools, picture fuzzy sets (PFSs) hold a special ability to perfectly portray inherent uncertain and vague decision preferences. The intention of this paper is to present a Pearson’s picture fuzzy correlation-based model for multi-attribute decision-making (MADM) analysis. To this end, we develop a new correlation coefficient for picture fuzzy sets, based on which a Pearson’s picture fuzzy closeness index is introduced to simultaneously calculate the relative proximity to the positive ideal point and the relative distance from the negative ideal point. On the basis of the presented concepts, a Pearson’s correlation-based model is further presented to address picture fuzzy MADM problems. Finally, an illustrative example is provided to examine the usefulness and feasibility of the proposed methodology.


Author(s):  
Juan-Juan Peng ◽  
Jian-Qiang Wang ◽  
Xiao-Hui Wu

Hesitant fuzzy sets (HFSs), an extension of fuzzy sets, are considered to be useful in solving decision making problems where decision makers are unable to choose between several values when expressing their preferences. The purpose of this paper is to develop two hesitant fuzzy multi-criteria decision making (MCDM) methods based on prospect theory (PT). First, the novel component-wise ordering method for two hesitant fuzzy numbers (HFNs) is defined; however, this method does not consider the length of the two HFNs. Second, by utilizing the directed Hausdorff distance between two imprecise point sets, the generalized hesitant Hausdorff distance is developed, which overcomes the shortcomings of the existing distance measures. Third, based on the proposed comparison method and distance, as well as PT, the extended TODIM and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) approaches are developed in order to solve MCDM problems with hesitant fuzzy information. Finally, a practical example is provided to illustrate the pragmatism and effectiveness of the proposed approaches. Sensitivity and comparison analyses are also conducted using the same example. The findings indicate that the proposed methods do not require complicated computation procedures, yet still yield a reasonable and credible solution.


2021 ◽  
Vol 40 (1) ◽  
pp. 1147-1160
Author(s):  
Yali Cheng ◽  
Yonghong Li ◽  
Jie Yang

Linguistic intuitionistic fuzzy sets can qualitatively rather than quantitatively express data in the form of membership degree. But quantitative tools are required to handle qualitative information. Therefore, an improved linguistic scale function, which can more accurately manifest the subjective feelings of decision-makers, is employed to deal with linguistic intuitionistic information. Subsequently, due to some commonly used distance measures do not comprehensively evaluate the information of linguistic intuitionistic fuzzy sets, an improved distance measure of linguistic intuitionistic fuzzy sets is designed. It considers the cross-evaluation information to get more realistic reasoning results. In addition, a new similarity measure defined by nonlinear Gaussian diffusion model is proposed, which can provide different response scales for different information between various schemes. The properties of these measures are also studied in detail. On this basis, a method in linguistic intuitionistic fuzzy environment is developed to handle multi-attribute decision-making problems. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method and the influence of the parameters is analyzed.


Author(s):  
Wuhuan Xu ◽  
Xiaopu Shang ◽  
Jun Wang

AbstractThe linguistic Pythagorean fuzzy sets (LPFSs), which employ linguistic terms to express membership and non-membership degrees, can effectively deal with decision makers’ complicated evaluation values in the process of multiple attribute group decision-making (MAGDM). To improve the ability of LPFSs in depicting fuzzy information, this paper generalized LPFSs to cubic LPFSs (CLPFSs) and studied CLPFSs-based MAGDM method. First, the definition, operational rules, comparison method and distance measure of CLPFSs are investigated. The CLPFSs fully adsorb the advantages of LPFSs and cubic fuzzy sets and hence they are suitable and flexible to depict attribute values in fuzzy and complicated decision-making environments. Second, based on the extension of power Hamy mean operator in CLPFSs, the cubic linguistic Pythagorean fuzzy power average operator, the cubic linguistic Pythagorean fuzzy power Hamy mean operator as well as their weighted forms were introduced. These aggregation operators can effectively and comprehensively aggregate attribute values in MAGDM problems. Besides, some important properties of these operators were studied. Finally, we presented a new MAGDM method based on CLPFSs and their aggregation operators. Illustrative examples and comparative analysis are provided to show the effectiveness and advantages of our proposed decision-making method.


2017 ◽  
Vol 7 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Ismat Beg ◽  
Tabasam Rashid

Abstract A notion for distance between hesitant fuzzy data is given. Using this new distance notion, we propose the technique for order preference by similarity to ideal solution for hesitant fuzzy sets and a new approach in modelling uncertainties. An illustrative example is constructed to show the feasibility and practicality of the new method.


Author(s):  
Abdul Haseeb Ganie ◽  
Surender Singh

AbstractPicture fuzzy set (PFS) is a direct generalization of the fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs). The concept of PFS is suitable to model the situations that involve more answers of the type yes, no, abstain, and refuse. In this study, we introduce a novel picture fuzzy (PF) distance measure on the basis of direct operation on the functions of membership, non-membership, neutrality, refusal, and the upper bound of the function of membership of two PFSs. We contrast the proposed PF distance measure with the existing PF distance measures and discuss the advantages in the pattern classification problems. The application of fuzzy and non-standard fuzzy models in the real data is very challenging as real data is always found in crisp form. Here, we also derive some conversion formulae to apply proposed method in the real data set. Moreover, we introduce a new multi-attribute decision-making (MADM) method using the proposed PF distance measure. In addition, we justify necessity of the newly proposed MADM method using appropriate counterintuitive examples. Finally, we contrast the performance of the proposed MADM method with the classical MADM methods in the PF environment.


2021 ◽  
pp. 1-16
Author(s):  
Jia-Jia Zhou ◽  
Xiang-Yang Li

 In present paper, we put forward four types of hesitant fuzzy β covering rough sets (HFβCRSs) by uniting covering based rough sets (CBRSs) and hesitant fuzzy sets (HFSs). We firstly originate hesitant fuzzy β covering of the universe, which can induce two types of neighborhood to produce four types of HFβCRSs. We then make further efforts to probe into the properties of each type of HFβCRSs. Particularly, the relationships of each type of rough approximation operators w.r.t. two different hesitant fuzzy β coverings are groped. Moreover, the relationships between our proposed models and some other existing related models are established. Finally, we give an application model, an algorithm, and an illustrative example to elaborate the applications of HFβCRSs in multi-attribute decision making (MADM) problems. By making comparative analysis, the HFβCRSs models proposed by us are more general than the existing models of Ma and Yang and are more applicable than the existing models of Ma and Yang when handling hesitant fuzzy information.


Sign in / Sign up

Export Citation Format

Share Document