scholarly journals An Algorithm for Counting the Fixed Point Orbits of an AND-OR Dynamical System with Symmetric Positive Dependency Graph

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1611
Author(s):  
Mauro Mezzini ◽  
Fernando L. Pelayo

In this paper we present an algorithm which counts the number of fixed point orbits of an AND-OR dynamical system. We further extend the algorithm in order to list all its fixed point orbits (FPOs) in polynomial time on the number of FPOs of the system.

2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.


2012 ◽  
Vol 09 (05) ◽  
pp. 1250039 ◽  
Author(s):  
SANJIT DAS ◽  
SAYAN KAR

We investigate various aspects of a geometric flow defined using the Bach tensor. First, using a well-known split of the Bach tensor components for (2, 2) unwarped product manifolds, we solve the Bach flow equations for typical examples of product manifolds like S2 × S2, R2 × S2. In addition, we obtain the fixed-point condition for general (2, 2) manifolds and solve it for a restricted case. Next, we consider warped manifolds. For Bach flows on a special class of asymmetrically warped 4-manifolds, we reduce the flow equations to a first-order dynamical system, which is solved exactly to find the flow characteristics. We compare our results for Bach flow with those for Ricci flow and discuss the differences qualitatively. Finally, we conclude by mentioning possible directions for future work.


2018 ◽  
Vol 28 (04) ◽  
pp. 1830011
Author(s):  
Mio Kobayashi ◽  
Tetsuya Yoshinaga

A one-dimensional Gaussian map defined by a Gaussian function describes a discrete-time dynamical system. Chaotic behavior can be observed in both Gaussian and logistic maps. This study analyzes the bifurcation structure corresponding to the fixed and periodic points of a coupled system comprising two Gaussian maps. The bifurcation structure of a mutually coupled Gaussian map is more complex than that of a mutually coupled logistic map. In a coupled Gaussian map, it was confirmed that after a stable fixed point or stable periodic points became unstable through the bifurcation, the points were able to recover their stability while the system parameters were changing. Moreover, we investigated a parameter region in which symmetric and asymmetric stable fixed points coexisted. Asymmetric unstable fixed point was generated by the [Formula: see text]-type branching of a symmetric stable fixed point. The stability of the unstable fixed point could be recovered through period-doubling and tangent bifurcations. Furthermore, a homoclinic structure related to the occurrence of chaotic behavior and invariant closed curves caused by two-periodic points was observed. The mutually coupled Gaussian map was merely a two-dimensional dynamical system; however, chaotic itinerancy, known to be a characteristic property associated with high-dimensional dynamical systems, was observed. The bifurcation structure of the mutually coupled Gaussian map clearly elucidates the mechanism of chaotic itinerancy generation in the two-dimensional coupled map. We discussed this mechanism by comparing the bifurcation structures of the Gaussian and logistic maps.


2003 ◽  
Vol 68 (1) ◽  
pp. 65-131 ◽  
Author(s):  
Andreas Blass ◽  
Yuri Gurevich

AbstractThis paper developed from Shelah's proof of a zero-one law for the complexity class “choiceless polynomial time,” defined by Shelah and the authors. We present a detailed proof of Shelah's result for graphs, and describe the extent of its generalizability to other sorts of structures. The extension axioms, which form the basis for earlier zero-one laws (for first-order logic, fixed-point logic, and finite-variable infinitary logic) are inadequate in the case of choiceless polynomial time; they must be replaced by what we call the strong extension axioms. We present an extensive discussion of these axioms and their role both in the zero-one law and in general.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79
Author(s):  
Stefan Wagner

A dynamical system is a triple ( A , G , α ) consisting of a unital locally convex algebra A, a topological group G, and a group homomorphism α : G → Aut ( A ) that induces a continuous action of G on A. Furthermore, a unital locally convex algebra A is called a continuous inverse algebra, or CIA for short, if its group of units A × is open in A and the inversion map ι : A × → A × , a ↦ a − 1 is continuous at 1 A . Given a dynamical system ( A , G , α ) with a complete commutative CIA A and a compact group G, we show that each character of the corresponding fixed point algebra can be extended to a character of A.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 957 ◽  
Author(s):  
Alessio Sozzi ◽  
Marcello Bonfè ◽  
Saverio Farsoni ◽  
Giacomo De Rossi ◽  
Riccardo Muradore

The paper addresses the problem of the generation of collision-free trajectories for a robotic manipulator, operating in a scenario in which obstacles may be moving at non-negligible velocities. In particular, the paper aims to present a trajectory generation solution that is fully executable in real-time and that can reactively adapt to both dynamic changes of the environment and fast reconfiguration of the robotic task. The proposed motion planner extends the method based on a dynamical system to cope with the peculiar kinematics of surgical robots for laparoscopic operations, the mechanical constraint being enforced by the fixed point of insertion into the abdomen of the patient the most challenging aspect. The paper includes a validation of the trajectory generator in both simulated and experimental scenarios.


2012 ◽  
Vol 204-208 ◽  
pp. 4776-4779
Author(s):  
Lin Huang ◽  
Huo Yun Wang ◽  
Hong Ying Wu

By a dynamical system we mean a compact metric space together with a continuous map . This article is devoted to study of invariant scrambled sets. A dynamical system is a periodically adsorbing system if there exists a fixed point and a periodic point such that and are dense in . We show that every topological weakly mixing and periodically adsorbing system contains an invariant and dense Mycielski scrambled set for some , where has no isolated points. A subset is a Myceilski set if it is a countable union of Cantor sets.


Author(s):  
Jingjun Lou ◽  
Shijian Zhu

In contrast to the unilateral claim in some papers that a positive Lyapunov exponent means chaos, it was claimed in this paper that this is just one of the three conditions that Lyapunov exponent should satisfy in a dissipative dynamical system when the chaotic motion appears. The other two conditions, any continuous dynamical system without a fixed point has at least one zero exponent, and any dissipative dynamical system has at least one negative exponent and the sum of all of the 1-dimensional Lyapunov exponents id negative, are also discussed. In order to verify the conclusion, a MATLAB scheme was developed for the computation of the 1-dimensional and 3-dimensional Lyapunov exponents of the Duffing system with square and cubic nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document