scholarly journals Global Dynamics of a Discrete-Time MERS-Cov Model

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 563
Author(s):  
Mahmoud H. DarAssi ◽  
Mohammad A. Safi ◽  
Morad Ahmad

In this paper, we have investigated the global dynamics of a discrete-time middle east respiratory syndrome (MERS-Cov) model. The proposed discrete model was analyzed and the threshold conditions for the global attractivity of the disease-free equilibrium (DFE) and the endemic equilibrium are established. We proved that the DFE is globally asymptotically stable when R0≤1. Whenever R˜0>1, the proposed model has a unique endemic equilibrium that is globally asymptotically stable. The theoretical results are illustrated by a numerical simulation.

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ming-Tao Li ◽  
Gui-Quan Sun ◽  
Juan Zhang ◽  
Zhen Jin

For a multigroup cholera model with indirect transmission, the infection for a susceptible person is almost invariably transmitted by drinking contaminated water in which pathogens,V. cholerae, are present. The basic reproduction numberℛ0is identified and global dynamics are completely determined byℛ0. It shows thatℛ0is a globally threshold parameter in the sense that if it is less than one, the disease-free equilibrium is globally asymptotically stable; whereas if it is larger than one, there is a unique endemic equilibrium which is global asymptotically stable. For the proof of global stability with the disease-free equilibrium, we use the comparison principle; and for the endemic equilibrium we use the classical method of Lyapunov function and the graph-theoretic approach.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Maoxing Liu ◽  
Qiang Hou ◽  
Boli Xie

Abstract For some infectious diseases, such as herpes and tuberculosis, there is incomplete recovery and relapse. These phenomena make them difficult to control. In consequence of this status, an SEIRS epidemic model with incomplete recovery and relapse on networks is established and the global dynamics is studied. The results show that when the basic reproduction number R 0 <=1 the disease-free equilibrium is globally asymptotically stable; when R 0 > 1, the endemic equilibrium is globally asymptotically stable. In addition, in consideration of vaccination control strategy, an SVEIRS model is introduced and the optimal control is solved. At last, the theoretical results are illustrated with numerical simulations.


2013 ◽  
Vol 18 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Rui Xu

A mathematical model describing the transmission dynamics of an infectious disease with an exposed (latent) period, relapse and a saturation incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. By using suitable Lyapunov functionals and LaSalle’s invariance principle, it is proven that if the basic reproduction number is less than unity, the diseasefree equilibrium is globally asymptotically stable and therefore the disease fades out; and if the basic reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable and the disease becomes endemic.


2019 ◽  
Vol 27 (01) ◽  
pp. 19-49 ◽  
Author(s):  
BAKARY TRAORÉ ◽  
OUSMANE KOUTOU ◽  
BOUREIMA SANGARÉ

In this paper, we investigate a nonautonomous and an autonomous model of schistosomiasis transmission with a general incidence function. Firstly, we formulate the nonautonomous model by taking into account the effect of climate change on the transmission. Through rigorous analysis via theories and methods of dynamical systems, we show that the nonautonomous model has a globally asymptotically stable disease-free periodic equilibrium when the associated basic reproduction ratio [Formula: see text] is less than unity. Otherwise, the system admits at least one positive periodic solutions if [Formula: see text] is greater than unity. Secondly, using the average of periodic functions, we further derive the autonomous model associated with the nonautonomous model. Therefore, we show that the disease-free equilibrium of the autonomous model is locally and globally asymptotically stable when the associated reproduction ratio [Formula: see text] is less than unity. When [Formula: see text] is greater than unity, the existence and global asymptotic stability of the endemic equilibrium is established under certain conditions. Finally, using linear and nonlinear specific incidence function, we perform some numerical simulations to illustrate our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150050
Author(s):  
Demou Luo ◽  
Qiru Wang

Of concern is the global dynamics of a two-species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, the global dynamics of the model is performed. Next, we incorporate Allee effect on the first species and offer a new analysis of equilibria and bifurcation discussion of the model. Finally, several numerical examples are performed to verify our theoretical results.


Author(s):  
B. El Boukari ◽  
N. Yousfi

In this work we investigate a new mathematical model that describes the interactions betweenCD4+ T cells, human immunodeficiency virus (HIV), immune response and therapy with two drugs.Also an intracellular delay is incorporated into the model to express the lag between the time thevirus contacts a target cell and the time the cell becomes actively infected. The model dynamicsis completely defined by the basic reproduction number R0. If R0 ≤ 1 the disease-free equilibriumis globally asymptotically stable, and if R0 > 1, two endemic steady states exist, and their localstability depends on value of R0. We show that the intracellular delay affects on value of R0 becausea larger intracellular delay can reduce the value of R0 to below one. Finally, numerical simulationsare presented to illustrate our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Zhang ◽  
Li Yingqi ◽  
Wenxiong Xu

We present an SEIS epidemic model with infective force in both latent period and infected period, which has different general saturation incidence rates. It is shown that the global dynamics are completely determined by the basic reproductive number R0. If R0≤1, the disease-free equilibrium is globally asymptotically stable in T by LaSalle’s Invariance Principle, and the disease dies out. Moreover, using the method of autonomous convergence theorem, we obtain that the unique epidemic equilibrium is globally asymptotically stable in T0, and the disease spreads to be endemic.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Yongqi Liu ◽  
Zhendong Sun ◽  
Guiquan Sun ◽  
Qiu Zhong ◽  
Li Jiang ◽  
...  

This paper presents a novel mathematical model with multidrug-resistant (MDR) and undetected TB cases. The theoretical analysis indicates that the disease-free equilibrium is globally asymptotically stable ifR0<1; otherwise, the system may exist a locally asymptotically stable endemic equilibrium. The model is also used to simulate and predict TB epidemic in Guangdong. The results imply that our model is in agreement with actual data and the undetected rate plays vital role in the TB trend. Our model also implies that TB cannot be eradicated from population if it continues to implement current TB control strategies.


Sign in / Sign up

Export Citation Format

Share Document