scholarly journals Generalized Camassa–Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1009
Author(s):  
Maria Santos Bruzón ◽  
Gaetana Gambino ◽  
Maria Luz Gandarias

In this paper, we consider a member of an integrable family of generalized Camassa–Holm (GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier method to construct conservation laws for this family of GCH equations. Using the conservation laws of the underlying equation, double reduction is also constructed. Finally, we investigate traveling waves of the GCH equations. We derive convergent series solutions both for the homoclinic and heteroclinic orbits of the traveling-wave equations, which correspond to pulse and front solutions of the original GCH equations, respectively.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maria Ihsane El Bahi ◽  
Khalid Hilal

In this paper, the problem of constructing the Lie point symmetries group of the nonlinear partial differential equation appeared in mathematical physics known as the generalized KdV-Like equation is discussed. By using the Lie symmetry method for the generalized KdV-Like equation, the point symmetry operators are constructed and are used to reduce the equation to another fractional ordinary differential equation based on Erdélyi-Kober differential operator. The symmetries of this equation are also used to construct the conservation Laws by applying the new conservation theorem introduced by Ibragimov. Furthermore, another type of solutions is given by means of power series method and the convergence of the solutions is provided; also, some graphics of solutions are plotted in 3D.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 795-800 ◽  
Author(s):  
Chaudry Masood Khalique ◽  
Innocent Simbanefayi

AbstractIn this paper we study the modified equal width-Burgers equation, which describes long wave propagation in nonlinear media with dispersion and dissipation. Using the Lie symmetry method in conjunction with the (G'/G)− expansion method we construct its travelling wave solutions. Also, we determine the conservation laws by invoking the new conservation theorem due to Ibragimov. As a result we obtain energy and linear momentum conservation laws.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mehdi Nadjafikhah ◽  
Mostafa Hesamiarshad

Lie symmetry method is performed for the nonlinear Jaulent-Miodek equation. We will find the symmetry group and optimal systems of Lie subalgebras. The Lie invariants associated with the symmetry generators as well as the corresponding similarity reduced equations are also pointed out. And conservation laws of the J-M equation are presented with two steps: firstly, finding multipliers for computation of conservation laws and, secondly, symbolic computation of conservation laws will be applied.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. Jafari ◽  
K. Goodarzi ◽  
M. Khorshidi ◽  
V. Parvaneh ◽  
Z. Hammouch

AbstractIn this paper, a Lie symmetry method is used for the nonlinear generalized Camassa–Holm equation and as a result reduction of the order and computing the conservation laws are presented. Furthermore, μ-symmetry and μ-conservation laws of the generalized Camassa–Holm equation are obtained.


2020 ◽  
Vol 17 (12) ◽  
pp. 2050173 ◽  
Author(s):  
Abdullahi Yusuf

The equation for fluid flow in porous media is analyzed in this paper with the aid of Lie symmetry method (LSM) and invariant subspace method (ISM). Infinitesimal generators, the entire geometric fields of the vectors and the symmetry groups of the equation being considered are given. One-dimensional optimal systems of sub-algebra are reported with corresponding reduced nonlinear ordinary differential equations. By means of ISM, we determine the exact solutions and invariant subspaces (ISs) for the equation under consideration. Moreover, with the aid of the new theorem of conservation, we establish the conservation laws (CLs) for the governing equation. The construction of the conserved vectors reveals the integrability and existence of soliton solutions of the equation for fluid flow in porous media.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Letlhogonolo Daddy Moleleki ◽  
Chaudry Masood Khalique

We analyze the(3+1)-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the(3+1)-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the(3+1)-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
O. H. EL-Kalaawy ◽  
S. M. Moawad ◽  
M. M. Tharwat ◽  
Rasha B. Al-Denari

Abstract In this paper, we consider the $(3+1)$ ( 3 + 1 ) -dimensional time-fractional Schamel–Zakharov–Kuznetsov–Burgers (SZKB) equation. With the help of the Riemann–Liouville derivatives, the Lie point symmetries of the $(3+1)$ ( 3 + 1 ) -dimensional time-fractional SZKB equation are derived. By applying the Lie point symmetry method as well as Erdélyi–Kober fractional operator, we get the similarity reductions of the time-fractional SZKB equation. Conservation laws of the time-fractional SZKB are constructed. Moreover, we obtain its power series solutions with the convergence analysis. In addition, the analytical solution is obtained by modified trial equation method. Finally, stability is analyzed graphically in different planes.


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640001 ◽  
Author(s):  
Abdullahi Rashid Adem

We consider a (2+1)-dimensional Korteweg–de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Abdullahi Rashid Adem ◽  
Chaudry Masood Khalique

We study a two-dimensional integrable generalization of the Kaup-Kupershmidt equation, which arises in various problems in mathematical physics. Exact solutions are obtained using the Lie symmetry method in conjunction with the extended tanh method and the extended Jacobi elliptic function method. In addition to exact solutions we also present conservation laws which are derived using the multiplier approach.


Sign in / Sign up

Export Citation Format

Share Document