scholarly journals Electromagnetic Scattering from a Graphene Disk: Helmholtz-Galerkin Technique and Surface Plasmon Resonances

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1429
Author(s):  
Mario Lucido

The surface plasmon resonances of a monolayer graphene disk, excited by an impinging plane wave, are studied by means of an analytical-numerical technique based on the Helmholtz decomposition and the Galerkin method. An integral equation is obtained by imposing the impedance boundary condition on the disk surface, assuming the graphene surface conductivity provided by the Kubo formalism. The problem is equivalently formulated as a set of one-dimensional integral equations for the harmonics of the surface current density. The Helmholtz decomposition of each harmonic allows for scalar unknowns in the vector Hankel transform domain. A fast-converging Fredholm second-kind matrix operator equation is achieved by selecting the eigenfunctions of the most singular part of the integral operator, reconstructing the physical behavior of the unknowns, as expansion functions in a Galerkin scheme. The surface plasmon resonance frequencies are simply individuated by the peaks of the total scattering cross-section and the absorption cross-section, which are expressed in closed form. It is shown that the surface plasmon resonance frequencies can be tuned by operating on the chemical potential of the graphene and that, for orthogonal incidence, the corresponding near field behavior resembles a cylindrical standing wave with one variation along the disk azimuth.


2019 ◽  
Vol 55 (33) ◽  
pp. 4813-4816 ◽  
Author(s):  
Xia Sun ◽  
Yu Zou ◽  
Jiang Jiang

Surface plasmon resonance excitation on Au enhances a visible light-assisted click reaction through synergistic photothermal and hot electron effects.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
F. Wu ◽  
P. A. Thomas ◽  
V. G. Kravets ◽  
H. O. Arola ◽  
M. Soikkeli ◽  
...  

AbstractPlasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in ~50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity~0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing.



Nano Express ◽  
2021 ◽  
Author(s):  
Nilesh Kumar Pathak ◽  
Partha Sarathi

Abstract In the present study, the heat generation in gold nanodimers when irradiated at their localized surface plasmon resonances is investigated numerically. The theoretical calculations are performed employing the first principal approach to obtain the absorption cross-section of gold nanodimer for different parameter ranges. The heating mechanism is enumerated in terms of its temperature by solving the steady-state heat transfer equation which depends on the absorption cross-section and surface plasmon resonance wavelength. These surface plasmon resonances are quite sensitive to the distance between the dimer and have been tuned from visible to IR range by managing the distance between spheres from 0 to 6nm. The computation of normalized electric field distribution of gold nanodimer under the plasmon resonance has been mapped using boundary element method(BEM) which enables visualization of the local hot spot that plays a significant role in optical heating applications. The work furnishes the basic understanding of the heating mechanism of gold nanodimer which can find application as plasmonic nanoheaters in several branches of science in visible and near-infrared regions of the electromagnetic spectrum.



2008 ◽  
Vol 18 (01) ◽  
pp. 71-78
Author(s):  
NORMAN J. MORGENSTERN HORING ◽  
H. L. CUI

Over the past twenty years, surface plasmon resonance has been developed as an effective technique for use in real-time biotechnological measurements of the kinetics of label-free biomolecular interactions with high sensitivity.1-16 On a fundamental level, it is the dielectric-imaging involvement of the adsorbed biomolecular layer (DNA for example) in shifting the surface plasmon resonance (SPR) frequency by means of electrostatic coupling at the interface with the metal film substrate that facilitates SPR-based optical sensing. Of course, there are various factors that can influence surface plasmon resonance, including plasma nonlocality, phonons, multiplicity of layers, all of which should be carefully examined. Moreover, tunable SPR phenomenology based on the role of a magnetic field (both classically and quantum mechanically) merits consideration in regard to the field's effects on both the substrate17 and the adsorbed layer(s).18 This paper is focused on the establishment of the basic equations governing surface plasmon resonance, incorporating all the features cited above. In it, we present the formulation and closed-form analytical solution for the dynamic, nonlocal screening function of a thick substrate material with a thin external adsorbed layer, which can be extended to multiple layers. The result involves solution of the random phase approximation (RPA) integral equation for the spatially inhomogeneous system of the substrate and adsorbed layer,19-25 given the individual polarizabilities of the thick substrate and the layer. (This is tantamount to the space-time matrix inversion of the inhomogeneous joint dielectric function of the system.) The frequency poles of the resulting screening function determine the shifted surface (and bulk) plasmon resonances and the associated residues at the resonance frequencies provide their relative excitation amplitudes. The latter represent the response strengths of the surface plasmon resonances (oscillator strengths), and will be of interest in optimizing the materials to be employed.



2012 ◽  
Vol 18 (30) ◽  
pp. 9230-9238 ◽  
Author(s):  
Masayuki Kanehara ◽  
Hisamitsu Arakawa ◽  
Tetsuya Honda ◽  
Masaki Saruyama ◽  
Toshiharu Teranishi




2016 ◽  
Vol 120 (9) ◽  
pp. 093110 ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Chee Ming Lim ◽  
Chuanyo Lee ◽  
Hung Ji Huang ◽  
Chun-Ting Lin ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document