scholarly journals Experimental and Numerical Analysis of Mode I Fracture Process of Rock by Semi-Circular Bend Specimen

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1769
Author(s):  
Peng Xiao ◽  
Diyuan Li ◽  
Guoyan Zhao ◽  
Meng Liu

The semi-circular bend (SCB) specimen is widely used to measure fracture toughness of brittle materials such as rock. In this work, the stress field, fracture process zone (FPZ), and crack propagation velocity of SCB specimen are analyzed during the fracture process of rock specimens. The FPZ of specimen is obtained by experimental and numerical methods under a three-point bend test. The stress concentration zones of specimen present a heart shape at peak load points. FPZ forms before macro fracture occurs. The macro fracture form inside FPZ in a post-peak region of a load–displacement curve. The crack propagation process of specimen include two stages, namely the rapid crack initial development stage, and the final crack splitting stage. The maximum crack propagation velocity of specimen is about 267 m/s, and the average crack propagation velocity is about 111 m/s.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chengxiao Li ◽  
Yuantong Zhang ◽  
Peng Xu ◽  
Chen An

Crack defects make it difficult to predict the dynamic fracture of tunnel specimens under an impact load. To study the impact of the velocity and crack location on a roadway under dynamic load, specimens with tunnel-type voids were made using polymethyl methacrylate. The split-Hopkinson bar was used as the loading method, and a digital laser dynamic caustics system was used to observe the fracture process of the specimens. The dynamic fracture process was evaluated by the crack propagation velocity, displacement, and dynamic stress intensity factor. To predict and verify the test results, ABAQUS was used to simulate the test process. It was found that the results of the simulated combinations of the crack propagation path and initial fracture toughness change law are consistent with the test results. The initial fracture toughness and the peak value of the crack propagation velocity increased with the increase of the impact velocity. The crack propagation law and trajectory were affected by the location of the prefabricated cracks.



1976 ◽  
Vol 12 (5) ◽  
pp. 518-525 ◽  
Author(s):  
A. P. Bobryakov ◽  
G. N. Pokrovskii ◽  
B. N. Serpeninov




2018 ◽  
Vol 42 (4) ◽  
pp. 805-817
Author(s):  
Shaohua Dong ◽  
Lai bin Zhang ◽  
Hewei Zhang ◽  
Yinuo Chen ◽  
Hang Zhang


2007 ◽  
Vol 348-349 ◽  
pp. 853-856
Author(s):  
Shan Suo Zheng ◽  
Lei Li ◽  
Guo Zhuan Deng ◽  
Liang Zhang

Steel reinforced high strength and high performance concrete (SRHSHPC) specimens were experimented to study the mechanical behaviors between steel and concrete interface. In experiment, interfacial bond softening process was observed, which can be explained in terms of damage along the interface, leading to progressive reduction of shear transfer capability between steel and high strength and high performance concrete (HSHPC). In this paper, bond softening process along the interface is considered in the analysis of crack-induced debonding. Interfacial bond-slip mechanism between steel and HSHPC is studied in detail based on fracture mechanics. With the help of acoustic emissions technology, the crack propagation in the interlayer was observed, thus the interfacial crack propagation and fracture model is set up. Under the assumption that the interlayer is weak concrete compared with concrete matrix, the stress field as well as displacement field around the crack tip is deduced. The characteristics of interfacial fracture process are discussed and a model for interfacial fracture process zone is built up. With this model, the size of fracture process zone can be derived. At last, the influence of the fracture process zone on interfacial fracture toughness is determined using critical fracture toughness. All these may contribute to improvement of theory for SRHSHPC composite structure.



2011 ◽  
Vol 250-253 ◽  
pp. 1856-1861
Author(s):  
Li Jun Lu ◽  
Jian Ping Liu ◽  
Zhong Mei Li

This paper focusing on the crack at hole of guyed-mast’s ear-plate connecting cables and shaft of guyed-mast, adopting two degree of freedom crack propagation model, track the crack propagation according to the increment of the deepest point and the surface point on the crack front of crack at hole of guyed-mast’s ear-plate. The stress intensity factors of I,II and III type crack with given shape and size have been calculated via finite element method, and a numerical method of calculating stress intensity factors with any shape and size crack has been proposed; furthermore according to modified I, II and III type compound crack propagation velocity formula on the basis of Paris crack propagation velocity formula, we analyzed the changing of crack shape parameter a/c with crack size parameter a/T of crack at hole of ear-plate connecting cable and shaft of guyed-mast by numerical integration method and obtained the propagation characteristic.



Sign in / Sign up

Export Citation Format

Share Document