scholarly journals A Study on Facial Expression Change Detection Using Machine Learning Methods with Feature Selection Technique

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2062
Author(s):  
Sang-Ha Sung ◽  
Sangjin Kim ◽  
Byung-Kwon Park ◽  
Do-Young Kang ◽  
Sunhae Sul ◽  
...  

Along with the fourth industrial revolution, research in the biomedical engineering field is being actively conducted. Among these research fields, the brain–computer interface (BCI) research, which studies the direct interaction between the brain and external devices, is in the spotlight. However, in the case of electroencephalograph (EEG) data measured through BCI, there are a huge number of features, which can lead to many difficulties in analysis because of complex relationships between features. For this reason, research on BCIs using EEG data is often insufficient. Therefore, in this study, we develop the methodology for selecting features for a specific type of BCI that predicts whether a person correctly detects facial expression changes or not by classifying EEG-based features. We also investigate whether specific EEG features affect expression change detection. Various feature selection methods were used to check the influence of each feature on expression change detection, and the best combination was selected using several machine learning classification techniques. As a best result of the classification accuracy, 71% of accuracy was obtained with XGBoost using 52 features. EEG topography was confirmed using the selected major features, showing that the detection of changes in facial expression largely engages brain activity in the frontal regions.




2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tarun Dhar Diwan ◽  
Siddartha Choubey ◽  
H. S. Hota ◽  
S. B Goyal ◽  
Sajjad Shaukat Jamal ◽  
...  

Identification of anomaly and malicious traffic in the Internet of things (IoT) network is essential for IoT security. Tracking and blocking unwanted traffic flows in the IoT network is required to design a framework for the identification of attacks more accurately, quickly, and with less complexity. Many machine learning (ML) algorithms proved their efficiency to detect intrusion in IoT networks. But this ML algorithm suffers many misclassification problems due to inappropriate and irrelevant feature size. In this paper, an in-depth study is presented to address such issues. We have presented lightweight low-cost feature selection IoT intrusion detection techniques with low complexity and high accuracy due to their low computational time. A novel feature selection technique was proposed with the integration of rank-based chi-square, Pearson correlation, and score correlation to extract relevant features out of all available features from the dataset. Then, feature entropy estimation was applied to validate the relationship among all extracted features to identify malicious traffic in IoT networks. Finally, an extreme gradient ensemble boosting approach was used to classify the features in relevant attack types. The simulation is performed on three datasets, i.e., NSL-KDD, USNW-NB15, and CCIDS2017, and results are presented on different test sets. It was observed that on the NSL-KDD dataset, accuracy was approx. 97.48%. Similarly, the accuracy of USNW-NB15 and CCIDS2017 was approx. 99.96% and 99.93%, respectively. Along with that, state-of-the-art comparison is also presented with existing techniques.



2021 ◽  
Author(s):  
Coralie Joucla ◽  
Damien Gabriel ◽  
Emmanuel Haffen ◽  
Juan-Pablo Ortega

Research in machine-learning classification of electroencephalography (EEG) data offers important perspectives for the diagnosis and prognosis of a wide variety of neurological and psychiatric conditions, but the clinical adoption of such systems remains low. We propose here that much of the difficulties translating EEG-machine learning research to the clinic result from consistent inaccuracies in their technical reporting, which severely impair the interpretability of their often-high claims of performance. Taking example from a major class of machine-learning algorithms used in EEG research, the support-vector machine (SVM), we highlight three important aspects of model development (normalization, hyperparameter optimization and cross-validation) and show that, while these 3 aspects can make or break the performance of the system, they are left entirely undocumented in a shockingly vast majority of the research literature. Providing a more systematic description of these aspects of model development constitute three simple steps to improve the interpretability of EEG-SVM research and, in fine, its clinical adoption.



2021 ◽  
Author(s):  
Ziyang Wang ◽  
Jiarong Ye ◽  
Li Ding ◽  
Tomotaroh Granzier-Nakajima ◽  
Shubhang Sharma ◽  
...  

As the most common cause of dementia, Alzheimer's disease (AD) faces challenges in terms of understanding of pathogenesis, developing early diagnosis and developing effective treatment. Rapid and accurate identification of AD biomarkers in the brain will be critical to provide novel insights of AD. To this end, in the current work, we developed a system that can enable a rapid screening of AD biomarkers by employing Raman spectroscopy and machine learning analyses in AD transgenic animal brains. Specifically, we collected Raman spectra on slices of mouse brains with and without AD, and used machine learning to classify AD and non-AD spectra. By contacting monolayer graphene with the brain slices, we achieved significantly increased accuracy from 77% to 98% in machine learning classification. Further, we identified the Raman signature bands that are most important in classifying AD and non-AD samples. Based on these, we managed to identify AD-related biomolecules, which have been confirmed by biochemical studies. Our Raman-machine learning integrated method is promising to greatly accelerate the study of AD and can be potentially extended to human samples and various other diseases.



2021 ◽  
Vol 10 (6) ◽  
pp. 3369-3376
Author(s):  
Saima Afrin ◽  
F. M. Javed Mehedi Shamrat ◽  
Tafsirul Islam Nibir ◽  
Mst. Fahmida Muntasim ◽  
Md. Shakil Moharram ◽  
...  

In this contemporary era, the uses of machine learning techniques are increasing rapidly in the field of medical science for detecting various diseases such as liver disease (LD). Around the globe, a large number of people die because of this deadly disease. By diagnosing the disease in a primary stage, early treatment can be helpful to cure the patient. In this research paper, a method is proposed to diagnose the LD using supervised machine learning classification algorithms, namely logistic regression, decision tree, random forest, AdaBoost, KNN, linear discriminant analysis, gradient boosting and support vector machine (SVM). We also deployed a least absolute shrinkage and selection operator (LASSO) feature selection technique on our taken dataset to suggest the most highly correlated attributes of LD. The predictions with 10 fold cross-validation (CV) made by the algorithms are tested in terms of accuracy, sensitivity, precision and f1-score values to forecast the disease. It is observed that the decision tree algorithm has the best performance score where accuracy, precision, sensitivity and f1-score values are 94.295%, 92%, 99% and 96% respectively with the inclusion of LASSO. Furthermore, a comparison with recent studies is shown to prove the significance of the proposed system. 



2022 ◽  
Author(s):  
Sahan M. Vijithananda ◽  
Mohan L. Jayatilake ◽  
Badra Hewavithana ◽  
Teresa Gonçalves ◽  
Luis M. Rato ◽  
...  

Abstract Background: Diffusion-weighted (DW) imaging is a well-recognized magnetic resonance imaging (MRI) technique that is being routinely used in brain examinations in modern clinical radiology practices. This study focuses on extracting demographic and texture features from MRI Apparent Diffusion Coefficient (ADC) images of human brain tumors, identifying the distribution patterns of each feature and applying Machine Learning (ML) techniques to differentiate malignant from benign brain tumors.Methods: This prospective study was carried out using 1599 labeled MRI brain ADC image slices, 995 malignant, 604 benign from 195 patients who were radiologically diagnosed and histopathologically confirmed as brain tumor patients.The demographics, mean pixel values, skewness, kurtosis, features of Grey Level Co-occurrence Matrix (GLCM), mean, variance, energy, entropy, contrast, homogeneity, correlation, prominence and shade, were extracted from MRI ADC images of each patient.At the feature selection phase, the validity of the extracted features were measured using ANOVA f-test. Then, these features were used as input to several Machine Learning classification algorithms and the respective models were assessed.Results: According to the results of ANOVA f-test feature selection process, two attributes: skewness (3.34) and GLCM homogeneity (3.45) scored the lowest ANOVA f-test scores. Therefore both features were excluded in continuation of the experiment. From the different tested ML algorithms, the Random Forest classifier was chosen to build the final ML model since it presented the highest accuracy. The final model was able to predict malignant and benign neoplasms with an 90.41% accuracy after the hyper parameter tuning process.Conclusion: This study concludes that the above mentioned features (except skewness and GLCM homogeneity) are informative to identify and differentiate malignant from benign brain tumors. Moreover, they enable the development of a high-performance ML model that has the ability to assist in the decision-making steps of brain tumor diagnosis process, prior to attempting invasive diagnostic procedures such as brain biopsies.



Sign in / Sign up

Export Citation Format

Share Document