scholarly journals Heronian Mean Operators Based on Novel Complex Linear Diophantine Uncertain Linguistic Variables and Their Applications in Multi-Attribute Decision Making

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2730
Author(s):  
Zeeshan Ali ◽  
Tahir Mahmood ◽  
Gustavo Santos-García

In this manuscript, we combine the notion of linear Diophantine fuzzy set (LDFS), uncertain linguistic set (ULS), and complex fuzzy set (CFS) to elaborate the notion of complex linear Diophantine uncertain linguistic set (CLDULS). CLDULS refers to truth, falsity, reference parameters, and their uncertain linguistic terms to handle problematic and challenging data in factual life impasses. By using the elaborated CLDULSs, some operational laws are also settled. Furthermore, by using the power Einstein (PE) aggregation operators based on CLDULS: the complex linear Diophantine uncertain linguistic PE averaging (CLDULPEA), complex linear Diophantine uncertain linguistic PE weighted averaging (CLDULPEWA), complex linear Diophantine uncertain linguistic PE Geometric (CLDULPEG), and complex linear Diophantine uncertain linguistic PE weighted geometric (CLDULPEWG) operators, and their useful results are elaborated with the help of some remarkable cases. Additionally, by utilizing the expounded works dependent on CLDULS, I propose a multi-attribute decision-making (MADM) issue. To decide the quality of the expounded works, some mathematical models are outlined. Finally, the incomparability and relative examination of the expounded approaches with the assistance of graphical articulations are evolved.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 145
Author(s):  
Yun Jin ◽  
Zareena Kousar ◽  
Kifayat Ullah ◽  
Tahir Mahmood ◽  
Nimet Yapici Pehlivan ◽  
...  

Interval-valued T-spherical fuzzy set (IVTSFS) handles uncertain and vague information by discussing their membership degree (MD), abstinence degree (AD), non-membership degree (NMD), and refusal degree (RD). MD, AD, NMD, and RD are defined in terms of closed subintervals of that reduce information loss compared to the T-spherical fuzzy set (TSFS), which takes crisp values from intervals; hence, some information may be lost. The purpose of this manuscript is to develop some Hamacher aggregation operators (HAOs) in the environment of IVTSFSs. To do so, some Hamacher operational laws based on Hamacher t-norms (HTNs) and Hamacher t-conorms (HTCNs) are introduced. Using Hamacher operational laws, we develop some aggregation operators (AOs), including an interval-valued T-spherical fuzzy Hamacher (IVTSFH) weighted averaging (IVTSFHWA) operator, an IVTSFH-ordered weighted averaging (IVTSFHOWA) operator, an IVTSFH hybrid averaging (IVTSFHHA) operator, an IVTSFH-weighted geometric (IVTSFHWG) operator, an IVTSFH-ordered weighted geometric (IVTSFHOWG) operator, and an IVTSFH hybrid geometric (IVTSFHHG) operator. The validation of the newly developed HAOs is investigated, and their basic properties are examined. In view of some restrictions, the generalization and proposed HAOs are shown, and a multi-attribute decision-making (MADM) procedure is explored based on the HAOs, which are further exemplified. Finally, a comparative analysis of the proposed work is also discussed with previous literature to show the superiority of our work.



Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 413 ◽  
Author(s):  
Huanhuan Jin ◽  
Shahzaib Ashraf ◽  
Saleem Abdullah ◽  
Muhammad Qiyas ◽  
Mahwish Bano ◽  
...  

The key objective of the proposed work in this paper is to introduce a generalized form of linguistic picture fuzzy set, so-called linguistic spherical fuzzy set (LSFS), combining the notion of linguistic fuzzy set and spherical fuzzy set. In LSFS we deal with the vague and defective information in decision making. LSFS is characterized by linguistic positive, linguistic neutral and linguistic negative membership degree which satisfies the conditions that the square sum of its linguistic membership degrees is less than or equal to 1. In this paper, we investigate the basic operations of linguistic spherical fuzzy sets and discuss some related results. We extend operational laws of aggregation operators and propose linguistic spherical fuzzy weighted averaging and geometric operators based on spherical fuzzy numbers. Further, the proposed aggregation operators of linguistic spherical fuzzy number are applied to multi-attribute group decision-making problems. To implement the proposed models, we provide some numerical applications of group decision-making problems. In addition, compared with the previous model, we conclude that the proposed technique is more effective and reliable.



Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 608 ◽  
Author(s):  
Saifullah Khan ◽  
Saleem Abdullah ◽  
Lazim Abdullah ◽  
Shahzaib Ashraf

The objective of this study was to create a logarithmic decision-making approach to deal with uncertainty in the form of a picture fuzzy set. Firstly, we define the logarithmic picture fuzzy number and define the basic operations. As a generalization of the sets, the picture fuzzy set provides a more profitable method to express the uncertainties in the data to deal with decision making problems. Picture fuzzy aggregation operators have a vital role in fuzzy decision-making problems. In this study, we propose a series of logarithmic aggregation operators: logarithmic picture fuzzy weighted averaging/geometric and logarithmic picture fuzzy ordered weighted averaging/geometric aggregation operators and characterized their desirable properties. Finally, a novel algorithm technique was developed to solve multi-attribute decision making (MADM) problems with picture fuzzy information. To show the superiority and the validity of the proposed aggregation operations, we compared it with the existing method, and concluded from the comparison and sensitivity analysis that our proposed technique is more effective and reliable.



Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 70 ◽  
Author(s):  
Gulfam Shahzadi ◽  
Muhammad Akram ◽  
Ahmad N. Al-Kenani

In fuzzy set theory, t-norms and t-conorms are fundamental binary operators. Yager proposed respective parametric families of both t-norms and t-conorms. In this paper, we apply these operators for the analysis of Pythagorean fuzzy sets. For this purpose, we introduce six families of aggregation operators named Pythagorean fuzzy Yager weighted averaging aggregation, Pythagorean fuzzy Yager ordered weighted averaging aggregation, Pythagorean fuzzy Yager hybrid weighted averaging aggregation, Pythagorean fuzzy Yager weighted geometric aggregation, Pythagorean fuzzy Yager ordered weighted geometric aggregation and Pythagorean fuzzy Yager hybrid weighted geometric aggregation. These tools inherit the operational advantages of the Yager parametric families. They enable us to study two multi-attribute decision-making problems. Ultimately we can choose the best option by comparison of the aggregate outputs through score values. We show this procedure with two practical fully developed examples.



2020 ◽  
pp. 1-20
Author(s):  
Muhammad Akram ◽  
Gulfam Shahzadi ◽  
Sundas Shahzadi

An q-rung orthopair fuzzy set is a generalized structure that covers the modern extensions of fuzzy set, including intuitionistic fuzzy set and Pythagorean fuzzy set, with an adjustable parameter q that makes it flexible and adaptable to describe the inexact information in decision making. The condition of q-rung orthopair fuzzy set, i.e., sum of q th power of membership degree and nonmembership degree is bounded by one, makes it highly competent and adequate to get over the limitations of existing models. The basic purpose of this study is to establish some aggregation operators under the q-rung orthopair fuzzy environment with Einstein norm operations. Motivated by innovative features of Einstein operators and dominant behavior of q-rung orthopair fuzzy set, some new aggregation operators, namely, q-rung orthopair fuzzy Einstein weighted averaging, q-rung orthopair fuzzy Einstein ordered weighted averaging, generalized q-rung orthopair fuzzy Einstein weighted averaging and generalized q-rung orthopair fuzzy Einstein ordered weighted averaging operators are defined. Furthermore, some properties related to proposed operators are presented. Moreover, multi-attribute decision making problems related to career selection, agriculture land selection and residential place selection are presented under these operators to show the capability and proficiency of this new idea. The comparison analysis with existing theories shows the superiorities of proposed model.



Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 357 ◽  
Author(s):  
Kifayat Ullah ◽  
Nasruddin Hassan ◽  
Tahir Mahmood ◽  
Naeem Jan ◽  
Mazlan Hassan

Expressing the measure of uncertainty, in terms of an interval instead of a crisp number, provides improved results in fuzzy mathematics. Several such concepts are established, including the interval-valued fuzzy set, the interval-valued intuitionistic fuzzy set, and the interval-valued picture fuzzy set. The goal of this article is to enhance the T-spherical fuzzy set (TSFS) by introducing the interval-valued TSFS (IVTSFS), which describes the uncertainty measure in terms of the membership, abstinence, non-membership, and the refusal degree. The novelty of the IVTSFS over the pre-existing fuzzy structures is analyzed. The basic operations are proposed for IVTSFSs and their properties are investigated. Two aggregation operators for IVTSFSs are developed, including weighted averaging and weighted geometric operators, and their validity is examined using the induction method. Several consequences of new operators, along with their comparative studies, are elaborated. A multi-attribute decision-making method in the context of IVTSFSs is developed, followed by a brief numerical example where the selection of the best policy, among a list of investment policies of a multinational company, is to be evaluated. The advantages of using the framework of IVTSFSs are described theoretically and numerically, hence showing the limitations of pre-existing aggregation operators.



Author(s):  
Hu-Chen Liu ◽  
Qing-Lian Lin ◽  
Jing Wu

Consider the various types of uncertain preference information provided by the decision makers and the importance of determining the associated weights for the aggregation operator, the multiple attribute group decision making (MAGDM) methods based on some dependent interval 2-tuple linguistic aggregation operators are proposed in this paper. Firstly some operational laws and possibility degree of interval 2-tuple linguistic variables are introduced. Then, we develop a dependent interval 2-tuple weighted averaging (DITWA) operator and a dependent interval 2-tuple weighted geometric (DITWG) operator, in which the associated weights only depend on the aggregated interval 2-tuple arguments and can relieve the influence of unfair arguments on the aggregated results by assigning low weights to them. Based on the DITWA and the DITWG operators, some approaches for multiple attribute group decision making with interval 2-tuple linguistic information are proposed. Finally, an illustrative example is given to demonstrate the practicality and effectiveness of the proposed approaches.



Author(s):  
Sidong Xian ◽  
Wenting Xue ◽  
Jianfeng Zhang ◽  
Yubo Yin ◽  
Qin Xie

With respect to multiple attribute group decision making (MAGDM) problems, in which the attribute weights take the form of real numbers, and the attribute values take the form of intuitionistic fuzzy linguistic variables, a decision analysis approach is proposed. In this paper, we develop an intuitionistic fuzzy linguistic induce OWA (IFLIOWA) operator and analyze the properties of it by utilizing some operational laws of intuitionistic fuzzy linguistic variables. A new method based on the IFLIOWA operator for multiple attribute group decision making (MAGDM) is presented. Finally, a numerical example is used to illustrate the applicability and effectiveness of the proposed method.



2021 ◽  
Vol 19 (1) ◽  
pp. 1078-1107
Author(s):  
Tahir Mahmood ◽  
◽  
Zeeshan Ali ◽  
Kifayat Ullah ◽  
Qaisar Khan ◽  
...  

<abstract> <p>The most important influence of this assessment is to analyze some new operational laws based on confidential levels (CLs) for complex Pythagorean fuzzy (CPF) settings. Moreover, to demonstrate the closeness between finite numbers of alternatives, the conception of confidence CPF weighted averaging (CCPFWA), confidence CPF ordered weighted averaging (CCPFOWA), confidence CPF weighted geometric (CCPFWG), and confidence CPF ordered weighted geometric (CCPFOWG) operators are invented. Several significant features of the invented works are also diagnosed. Moreover, to investigate the beneficial optimal from a large number of alternatives, a multi-attribute decision-making (MADM) analysis is analyzed based on CPF data. A lot of examples are demonstrated based on invented works to evaluate the supremacy and ability of the initiated works. For massive convenience, the sensitivity analysis and merits of the identified works are also explored with the help of comparative analysis and they're graphical shown.</p> </abstract>



Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Tahir Mahmood ◽  
Izatmand ◽  
Zeeshan Ali ◽  
Kifayat Ullah ◽  
Qaisar Khan ◽  
...  

Linear Diophantine uncertain linguistic set (LDULS) is a modified variety of the fuzzy set (FS) to manage problematic and inconsistent information in actual life troubles. LDULS covers the grade of truth, grade of falsity, and their reference parameters with the uncertain linguistic term (ULT) with a rule 0 ≤ α AMG u AMG x + β ANG v AMG x ≤ 1 , where 0 ≤ α AMG + β ANG ≤ 1 . In this study, the principle of LDULS and their useful laws are elaborated. Additionally, the power Einstein (PE) aggregation operator (AO) is a conventional sort of AO utilized in innovative decision-making troubles, which is effective to aggregate the family of numerical elements. To determine the interrelationship between any numbers of arguments, we elaborate the linear Diophantine uncertain linguistic PE averaging (LDULPEA), linear Diophantine uncertain linguistic PE weighted averaging (LDULPEWA), linear Diophantine uncertain linguistic PE geometric (LDULPEG), and linear Diophantine uncertain linguistic PE weighted geometric (LDULPEWG) operators; then, we discuss their useful results. Conclusively, a decision-making methodology is utilized for the multiattribute decision-making (MADM) dilemma with elaborated information. A sensible illustration is specified to demonstrate the accessibility and rewards of the intended technique by comparison with certain prevailing techniques. The intended AOs are additional comprehensive than the prevailing ones to exploit the ambiguous and inaccurate knowledge. Numerous remaining operators are chosen as individual incidents of the suggested one. Ultimately, the supremacy and advantages of the elaborated operators are also discussed with the help of the geometrical form to show the validity and consistency of explored operators.



Sign in / Sign up

Export Citation Format

Share Document