scholarly journals Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2813
Author(s):  
Jaehyeong Lee ◽  
Hyuk Jang ◽  
Sungmin Ha ◽  
Yourim Yoon

Since the discovery that machine learning can be used to effectively detect Android malware, many studies on machine learning-based malware detection techniques have been conducted. Several methods based on feature selection, particularly genetic algorithms, have been proposed to increase the performance and reduce costs. However, because they have yet to be compared with other methods and their many features have not been sufficiently verified, such methods have certain limitations. This study investigates whether genetic algorithm-based feature selection helps Android malware detection. We applied nine machine learning algorithms with genetic algorithm-based feature selection for 1104 static features through 5000 benign applications and 2500 malwares included in the Andro-AutoPsy dataset. Comparative experimental results show that the genetic algorithm performed better than the information gain-based method, which is generally used as a feature selection method. Moreover, machine learning using the proposed genetic algorithm-based feature selection has an absolute advantage in terms of time compared to machine learning without feature selection. The results indicate that incorporating genetic algorithms into Android malware detection is a valuable approach. Furthermore, to improve malware detection performance, it is useful to apply genetic algorithm-based feature selection to machine learning.

2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yubo Song ◽  
Yijin Geng ◽  
Junbo Wang ◽  
Shang Gao ◽  
Wei Shi

Since a growing number of malicious applications attempt to steal users’ private data by illegally invoking permissions, application stores have carried out many malware detection methods based on application permissions. However, most of them ignore specific permission combinations and application categories that affect the detection accuracy. The features they extracted are neither representative enough to distinguish benign and malicious applications. For these problems, an Android malware detection method based on permission sensitivity is proposed. First, for each kind of application categories, the permission features and permission combination features are extracted. The sensitive permission feature set corresponding to each category label is then obtained by the feature selection method based on permission sensitivity. In the following step, the permission call situation of the application to be detected is compared with the sensitive permission feature set, and the weight allocation method is used to quantify this information into numerical features. In the proposed method of malicious application detection, three machine-learning algorithms are selected to construct the classifier model and optimize the parameters. Compared with traditional methods, the proposed method consumed 60.94% less time while still achieving high accuracy of up to 92.17%.


2020 ◽  
Vol 8 (5) ◽  
pp. 3353-3360

Android is the most popular Operating Systems with over 2.5 billion devices across the globe. The popularity of this OS has unfortunately made the devices and the services they enable, vulnerable to numerous security threats. As a result of this, a significant research is being done in the field of Android Malware Detection employing Machine Learning Algorithms. Our current work emphasizes on the possible use of Machine Learning techniques for the detection of malware on such android devices. The proposed EKMPRFG is applied for the classification of Android Malware after a preprocessing phase involving a hybrid Feature Selection model using proposed Standard Deviation of Standard Deviation of Ranks (SDSDR) and several other builtin Feature Selection algorithms such as Correlation based Feature Selection (CFS), Classifier SubsetEval, Consistency SubsetEval, and Filtered SubsetEval followed by Principal Component Analysis(PCA) for dimensionality reduction. The experimental results obtained on two data sets indicate that EKMPRFG outperforms the existing works in terms of Prediction Accuracy and Weighted F- Measure values.


Android malware have risen exponentially over the past few years, posing several serious threats such as system damage, financial loss, and mobile botnets. Various detection techniques have been proposed in the literature for Android malware detection. Some of the techniques analyze static parameters such as permissions, or intents, whereas, others focus on dynamic parameters such as network traffic or system calls. Static techniques are relatively easier to implement, however, stealthy recent malware evade static detection by virtue of update attacks. Dynamic detection can be used to detect such stealthy malware, however, it increases the computation overhead. Hence, both kinds of techniques have their own advantages and disadvantages. In this paper, we have proposed an innovative hybrid detection model that uses both static and dynamic features for malware analysis and detection. We first rank the static and dynamic parameters according to the information gain and then apply machine learning algorithms in the testing phase. The results indicate that hybrid approach is better than both static and dynamic approaches and the proposed model achieves 98.9% detection accuracy with Decision Tree classifier


2020 ◽  
Vol 07 (02) ◽  
pp. 145-159 ◽  
Author(s):  
Md. Shohel Rana ◽  
Andrew H. Sung

Android is the most well-known portable working framework having billions of dynamic clients worldwide that pulled in promoters, programmers, and cybercriminals to create malware for different purposes. As of late, wide-running inquiries have been led on malware examination and identification for Android gadgets while Android has likewise actualized different security controls to manage the malware issues, including a User ID (UID) for every application, framework authorizations. In this paper, we advance and assess various kinds of machine learning (ML) by applying ensemble-based learning systems for identifying Android malware related to a substring-based feature selection (SBFS) strategy for the classifiers. In the investigation, we have broadened our previous work where it has been seen that the ensemble-based learning techniques acquire preferred outcome over the recently revealed outcome by directing the DREBIN dataset, and in this manner they give a solid premise to building compelling instruments for Android malware detection.


Sign in / Sign up

Export Citation Format

Share Document