scholarly journals Enzyme-Aided Extraction of Fucoidan by AMG Augments the Functionality of EPCs through Regulation of the AKT/Rheb Signaling Pathway

Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 392
Author(s):  
Vinoth Kumar Rethineswaran ◽  
Yeon-Ju Kim ◽  
Woong Bi Jang ◽  
Seung Taek Ji ◽  
Songhwa Kang ◽  
...  

The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1445-1445
Author(s):  
Eun-Sun Yoo ◽  
Yeung-Chul Mun ◽  
Kyoung-Eun Lee ◽  
Eunmi Nam ◽  
Jee-Young Ahn ◽  
...  

Abstract Abstract 1445 Poster Board I-468 Purpose VEGF is a key angiogenic growth factor stimulating proliferation, migration, and tube formation on endothelial cells (ECs), that works through the VEGF receptor type 2 (VEGR2, KDR/Flk1). Reactive oxygen species (ROS) such as superoxide and H2O2 have roles signaling for molecules on angiogenesis. In present study, the aim is to investigate the roles of reactive oxygen species on neovascularization in endothelial progenitor cells. Methods Mononuclear cells isolated from UCB were cultured using EGM-2 medium with VEGF, IGF-1 and FGF or basal medium in presence or absence of VEGF for 7 days. Outgrowing endothelail progenitor cells (Yoo et al, STEM CELLS 21:228-235, 2003) at first week of culture were analyzed ROS production by dichlorofluorescein (DCF) fluorescence by use of 2,7-dichlorodihydro-fluoresceine-diacetate (H2DCF-DA). In order to determine that ROS production might involve in EPC proliferation and migration, we had analyzed the impact of N-acetyl-L-cysteine (NAC), broad spectrum ROS scavenger, and NAD(P)H oxidase inhibitor, diphenylene iodonium (DPI) using the proliferation, in vitro tube formation matrigel assay, migration assay with SDF-1/VEGF. We also analyzed the expression of NOX2-based NADPH oxidase (gp91phox) and activation of ERK2 and Akt (Thr308 and Ser473) using VEGF with or without DPI. Results Intracellular ROS level were increased during endothelial progenitor cell culture and were higher in UCB compared to that of BM and increased by VEGF treatment. Proliferation, in vitro tube formation matrigel assay and migration assay on endothelial progenitor cells using SDF-1/VEGF were decreased with additions of ROS scavenger DPI when compared with that of control group. In western blot data, NOX2-based NADPH oxidase(gp91phox) was increased by VEGF and decreased by addition of DPI. VEGF induced pERK2 expression was also decreased by DPI and that finding was correlated on down-regulation of endothelial cell proliferation by DPI. Activation of Ser473 Akt was found in control group and decreased by VEGF and rebounded by VEGF and DPI. But Thr308 Akt was not activated in our experiments. Conclusions These results suggested that NOX2-based NADPH oxidase(gp91phox)-induced ROS might play important roles on EPCs migration and proliferation by VEGF. Namely, manipulating the level of ROS biochemically may alter the pathogenesis in cardiovascular and in ischemic limb diseases. In results, these data may be useful to develop new therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 109 (05) ◽  
pp. 940-947 ◽  
Author(s):  
Lara Khzam ◽  
Ahmed Hachem ◽  
Younes Zaid ◽  
Rahma Boulahya ◽  
Walid Mourad ◽  
...  

SummaryAdult peripheral blood angiogenic early outgrowth cells (EOCs), also known as early endothelial progenitor cells, interact with other blood and vascular cells and may regulate atherothrombosis. We have previously shown that endothelial progenitor cells inhibit platelet function and thrombus formation. The CD40L/CD40 axis is a thrombo-inflammatory mediator that affects platelet and endothelial functions. It has been shown that EOCs express CD40, whereas platelets represent the major source of its soluble ligand (sCD40L), which impairs EOC function. We aimed to test the hypothesis that the sCD40L/CD40 axis affects the anti-platelet function of EOCs. Human peripheral blood mononuclear cell-derived EOCs in culture inhibited platelet aggregation. Pre-treatment of EOCs with sCD40L reduced their in-hibitory effect on platelet aggregation in a CD40-dependent manner. EOCs viability and release of the anti-aggregating agents, prostacyclin and nitric oxide, were not affected by sCD40L. However, production of reactive oxygen species (ROS) was increased in sCD40L–treated EOCs. Blockade of ROS reversed the effects of sCD40L–treated EOCs on platelet aggregation. This study reveals that the sCD40L/CD40 axis impairs the anti-platelet properties of EOCs through increased production of ROS. These data may explain the link between elevated levels of sCD40L, impaired activity of EOCs and enhanced platelet reactivity, and consequently the occurrence of atherothrombotic disease.


2017 ◽  
Vol 95 (5) ◽  
pp. 474-480 ◽  
Author(s):  
Ting-Bo Li ◽  
Jie-Jie Zhang ◽  
Bin Liu ◽  
Xiu-Ju Luo ◽  
Qi-Lin Ma ◽  
...  

NADPH oxidase (NOX) is a major source of reactive oxygen species (ROS) in the body and it plays a key role in mediation of oxidative injury in the cardiovascular system. The purposes of this study are to evaluate the status of NOX in endothelial progenitor cells (EPCs) of hyperlipidemic rats and to determine whether NOX-derived ROS promotes the dysfunction of EPCs. The rats were fed on a high-fat diet for 8 weeks to establish a hyperlipidemic rat model, which showed the increased plasma lipids and the impaired functions of circulating EPCs (including the reduced abilities in migration and adhesion) accompanied by an increase in NOX activity and ROS production. Next, EPCs were isolated from normal rats and they were treated with oxidized low-density lipoprotein (ox-LDL) (100 μg/mL) for 24 h to induce a dysfunctional model in vitro. In agreement with our findings in vivo, ox-LDL treatment increased the dysfunctions of EPCs concomitant with an increase in NOX activity and ROS production; these phenomena were reversed by the NOX inhibitor. Based on these observations, we conclude that NOX-derived ROS involved in the dysfunctions of circulating EPCs in hyperlipidemic rats and inhibition of NOX might provide a novel strategy to improve EPC functions in hyperlipidemia.


2022 ◽  
Vol 12 (1) ◽  
pp. 206-214
Author(s):  
Ru-Sheng Liu ◽  
Bin Li ◽  
Wen-Dong Li ◽  
Xiao-Long Du ◽  
Xiao-Qiang Li

<sec> <title>Aim:</title> In this study, we aimed to investigate the effects and mechanisms of miRNA-130a in human endothelial progenitor cells (EPCs) involved in Deep vein thrombosis (DVT). </sec> <sec> <title>Methods:</title> EPCs were isolated and identified by cell morphology and surface marker detection. The effect of miR-130a on the migration, invasion and angiogenesis of EPCs in vitro were also detected. In addition, whether miR-130a is involved in the MMP-1 expression and Akt/PI3K/mTOR signaling pathway was also demonstrated. </sec> <sec> <title>Results:</title> Results suggested that miRNA-130a promotes migration, invasion, and tube formation of EPCs by positively regulating the expression of MMP-1 through Akt/PI3K/mTOR signaling pathway. </sec> <sec> <title>Conclusion:</title> Thus, as a potential therapeutic target, miRNA-130a may play an important role in the treatment of DVT. </sec>


Sign in / Sign up

Export Citation Format

Share Document