scholarly journals Anti-Obesity Effect of Diphlorethohydroxycarmalol Isolated from Brown Alga Ishige okamurae in High-Fat Diet-Induced Obese Mice

Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 637 ◽  
Author(s):  
Yuling Ding ◽  
Lei Wang ◽  
SeungTae Im ◽  
Ouibo Hwang ◽  
Hyun-Soo Kim ◽  
...  

Diphlorethohydroxycarmalol (DPHC) is one of the most abundant bioactive compounds in Ishige okamurae. The previous study suggested that DPHC possesses strong in vitro anti-obesity activity in 3T3-L1 cells. However, the in vivo anti-obesity effect of DPHC has not been determined. The current study explored the effect of DPHC on high-fat diet (HFD)-induced obesity in C57BL/6J mice. The results indicated that oral administration of DPHC (25 and 50 mg/kg/day for six weeks) significantly and dose-dependently reduced HFD-induced adiposity and body weight gain. DPHC not only decreased the levels of triglyceride, low-density lipoprotein cholesterol, leptin, and aspartate transaminase but also increased the level of high-density lipoprotein cholesterol in the serum of HFD mice. In addition, DPHC significantly reduced hepatic lipid accumulation by reduction of expression levels of the critical enzymes for lipogenesis including SREBP-1c, FABP4, and FAS. Furthermore, DPHC remarkably reduced the adipocyte size, as well as decreased the expression levels of key adipogenic-specific proteins and lipogenic enzymes including PPARγ, C/EBPα, SREBP-1c, FABP4, and FAS, which regulate the lipid metabolism in the epididymal adipose tissue (EAT). Further studies demonstrated that DPHC significantly stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in both liver and EAT. These results demonstrated that DPHC effectively prevented HFD-induced obesity and suggested that DPHC could be used as a potential therapeutic agent for attenuating obesity and obesity-related diseases.

2018 ◽  
Vol 46 (01) ◽  
pp. 119-136 ◽  
Author(s):  
Sarmila Nepali ◽  
Ji-Yun Cha ◽  
Hyeon-Hui Ki ◽  
Hoon-Yeon Lee ◽  
Young-Ho Kim ◽  
...  

Chrysanthemum indicum (CI) is widely distributed in China and many parts of the tropical world, and has been reported to have antibacterial, antiviral, anti-oxidant and immunomodulatory effects, but no information is available on its effects on high fat diet (HFD)-induced obesity. This was undertaken to investigate the mechanism responsible for the effect of ethyl acetate fraction of CI (CIEA) on adipogenesis, in vitro and in vivo models of obesity. In the in vitro study, differentiating 3T3-L1 cells were treated with media to initiate differentiation (MDI) in the presence or absence of CIEA with different concentrations, and in the in vivo study, C57BL/6 mice were fed with HFD and administered CIEA daily for six weeks. Garcinia cambogia (GC) was used as the positive control, and was administered in the same manner as CIEA. Results showed CIEA reduced HFD-induced body weight gain, epididymal white adipose tissue (eWAT), and liver weight. In addition, CIEA significantly decreased serum lipid profiles, including total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDLc) and increased high density lipoprotein cholesterol (HDLc) levels. Furthermore, CIEA also reduced leptin levels and increased adiponectin levels in serum, and significantly decreased peroxisome proliferator-activated receptor [Formula: see text] (PPAR[Formula: see text]) and CCAAT/enhancer-binding protein (C/EPBs) levels, but increased PPAR[Formula: see text] level and the phosphorylation of AMP-activated protein kinase (AMPK) in eWATs and in the liver tissues of HFD fed obese mice. Taken together, these results indicate CIEA might be beneficial for preventing obesity.


2020 ◽  
Author(s):  
Liyu Zhou ◽  
Jun Long ◽  
Yuting Sun ◽  
Weikai Chen ◽  
Runze Qiu ◽  
...  

Abstract Background Atherosclerosis (AS), which characterized with the accumulation of lipids on the vessel wall, is the pathological basis of many cardiovascular diseases (CVD) and seriously threatens human health. Resveratrol (RES) has been reported to be benefit for AS treatment. This research aimed to observe the effects of RES on AS induced by high-fat diet (HFD) and LPS in ApoE -/- mice and investigate the underlying mechanism. Methods ApoE -/- mice were fed with HFD companied with LPS to induce AS and RES was administrated for 20 weeks. Splenic CD4 + T cells were cultured and treated with anti-CD3/CD28 together with LPS, and RES was added. Serum lipids and the atherosclerotic areas of aortas were detected. The activation of CD4 + T cells were investigated both in vivo and in vitro and the expression of DNA methyltransferases (Dnmt) in CD4 + T cells were measured. Results In vivo, administration of RES prevented HFD and LPS induced dysfunction of serum lipids including TC (total cholesterol), TG (triglyceride), LDL-C (low density lipoprotein cholesterol) and HDL-C (high density lipoprotein cholesterol), ameliorated the thickened coronary artery wall and decreased the areas of atherosclerotic lesion on aortas. Besides, RES decreased the number of CD4 + T cells in peripheral blood, decreased the expression of CD25 and CD44, but not affected the expression of L-selectin (CD62L). In vitro, RES decreased the expression of Ki67, CD25 and CD44 in CD4 + T cells. Moreover, RES increased the secretion of IL-2, IL-10 and TGF-β1, decreased IL-6. In addition, RES decreased both the mRNA and protein level of Dnmt1 and Dnmt3b in CD4 + T cells. Conclusion These results indicated that RES ameliorated AS induced by HFD companied with LPS in ApoE -/- mice and inhibited the proliferation and activation of CD4 + T cells by regulating the expression of Dnmt1 and Dnmt3b.


2020 ◽  
Author(s):  
Liyu Zhou ◽  
Jun Long ◽  
Yuting Sun ◽  
Weikai Chen ◽  
Runze Qiu ◽  
...  

Abstract Background: Atherosclerosis (AS), which characterized with the accumulation of lipids on the vessel wall, is the pathological basis of many cardiovascular diseases (CVD) and seriously threatens human health. Resveratrol (RES) has been reported to be benefit for AS treatment. This research aimed to observe the effects of RES on AS induced by high-fat diet (HFD) and LPS in ApoE-/- mice and investigate the underlying mechanism.Methods: ApoE-/- mice were fed with HFD companied with LPS to induce AS and RES was administrated for 20 weeks. Splenic CD4+ T cells were cultured and treated with anti-CD3/CD28 together with LPS, and RES was added. Serum lipids and the atherosclerotic areas of aortas were detected. The activation of CD4+ T cells were investigated both in vivo and in vitro and the expression of DNA methyltransferases (Dnmt) in CD4+ T cells were measured. Results: In vivo, administration of RES prevented HFD and LPS induced dysfunction of serum lipids including TC (total cholesterol), TG (triglyceride), LDL-C (low density lipoprotein cholesterol) and HDL-C (high density lipoprotein cholesterol), ameliorated the thickened coronary artery wall and decreased the areas of atherosclerotic lesion on aortas. Besides, RES decreased the number of CD4+ T cells in peripheral blood, decreased the expression of CD25 and CD44, but not affected the expression of L-selectin (CD62L). In vitro, RES decreased the expression of Ki67, CD25 and CD44 in CD4+ T cells. Moreover, RES increased the secretion of IL-2, IL-10 and TGF-β1, decreased IL-6. In addition, RES decreased both the mRNA and protein level of Dnmt1 and Dnmt3b in CD4+ T cells.Conclusion: These results indicated that RES ameliorated AS induced by HFD companied with LPS in ApoE-/- mice, inhibited the proliferation and activation of CD4+ T cells and regulated the expression of Dnmt1 and Dnmt3b.


2020 ◽  
Vol 39 (8) ◽  
pp. 1005-1018 ◽  
Author(s):  
I Cinar ◽  
Z Halici ◽  
B Dincer ◽  
B Sirin ◽  
E Cadirci

The presence of 5-HT7r’s in both human and rat cardiovascular and immune tissues and their contribution to inflammatory conditions prompted us to hypothesize that these receptors contribute in acute myocardial infarction (MI) with underlying chronic endothelial dysfunction. We investigated the role of 5-HT7 receptors on heart tissue that damaged by isoproterenol (ISO)-induced MI in rats with high-fat diet (HFD). In vitro and in vivo effects of 5-HT7r agonist (LP44) and antagonist (SB269970) have been investigated on the H9C2 cell line and rats, respectively. For in vivo analyses, rats were fed with HFD for 8 weeks and after this period ISO-induced MI model has been applied to rat. To investigate the role of 5-HT7r’s, two different doses of LP44 and SB269970 were evaluated and compared with standard hypolipidemic agent, atorvastatin. In vitro studies showed that LP44 has protective and proliferative effects on rat cardiomyocytes. Also in in vivo studies stimulating 5-HT7r’s by LP44 improved blood lipid profile (decreased total cholesterol, low-density lipoprotein-C, and triglyceride, increased high-density lipoprotein), decreased cardiac damage markers (creatine kinase and troponin-I), and corrected inflammatory status (tumor necrosis factor-α, interleukin-6). Our results showed significant improvement in LP44 administered rats in terms of histopathologic analyses. In damaged tissues, 5-HT7 mRNA expression increased and agonist administration decreased this elevation significantly. We determined for the first time that 5-HT7r’s are overexpressed in ISO-induced MI of rats with underlying HFD-induced endothelial dysfunction. Restoration of this overexpression by LP44, a 5-HT7r agonist, ameliorated heart tissue in physiopathologic, enzymatic, and molecular level, showing the cardiac role of these receptors and suggesting them as future potential therapeutic targets.


2014 ◽  
Vol 306 (1) ◽  
pp. E75-E90 ◽  
Author(s):  
Emmanuelle Kuhn ◽  
Christine Bourgeois ◽  
Vixra Keo ◽  
Say Viengchareun ◽  
Adeline Muscat ◽  
...  

The mineralocorticoid receptor (MR) exerts proadipogenic and antithermogenic effects in vitro, yet its in vivo metabolic impact remains elusive. Wild type (WT) and transgenic (Tg) mice overexpressing human MR were subjected to standard chow (SC) or high-fat diet (HFD) for 16 wk. Tg mice had a lower body weight gain than WT animals and exhibited a relative resistance to HFD-induced obesity. This was associated with a decrease in fat mass, an increased population of smaller adipocytes, and an improved glucose tolerance compared with WT animals. Quantitative RT-PCR studies revealed decreased expression of PPARγ2, a master adipogenic gene, and of glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1, consistent with an impaired local glucocorticoid signaling in adipose tissues (AT). This paradoxical resistance to HFD-induced obesity was not related to an adipogenesis defect since differentiation capacity of Tg preadipocytes isolated from stroma-vascular fractions was unaltered, suggesting that other nonadipocyte factors might compromise AT development. Although AT macrophage infiltration was not different between genotypes, Tg mice exhibited a distinct macrophage polarization, as revealed by FACS analysis and CD11c/CD206 expression studies. We further demonstrated that Tg macrophage-conditioned medium partially impaired preadipocyte differentiation. Therefore, we propose that modification of M1/M2 polarization of hMR-overexpressing macrophages could account in part for the metabolic phenotype of Tg mice. Collectively, our results provide evidence that MR exerts a pivotal immunometabolic role by controlling adipocyte differentiation processes directly but also indirectly through macrophage polarization regulation. Our findings should be taken into account for the pharmacological treatment of metabolic disorders.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bilal A. Zargar ◽  
Mubashir H. Masoodi ◽  
Bahar Ahmed ◽  
Showkat A. Ganie

The present study was intended to evaluate the effects of Paeonia emodi rhizome extracts on serum triglycerides (TGs), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), atherogenic index (AI), superoxide dismutase (SOD), and glutathione peroxidase (GPx). The plant was extensively examined for its in vitro antioxidant activity, and the preliminary phytochemical screening was carried out using standard protocols. Male Wistar rats were induced with hyperlipidemia using high-fat diet and were treated orally with hydroalcoholic and aqueous extracts at the dose of 200 mg/kg bw for 30 days. TGs, TC, LDL-c, and AI were significantly reduced while HDL-c, SOD, and GPx levels rose to a considerable extent. After subjecting to acute toxicity testing, the extracts were found to be safe. The observations suggest antihyperlipidemic and antioxidant potential of P. emodi in high-fat diet induced hyperlipidemic/oxidative stressed rats.


Author(s):  
Geke Aline Boer ◽  
Jenna Hunt ◽  
Maria Gabe ◽  
Johanne Windeløv ◽  
Alexander Sparre-Ulricht ◽  
...  

Background and purpose The incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K-cells in the proximal intestine, may regulate lipid metabolism and adiposity but its exact role in these processes is unclear. Experimental approach We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt-1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high-fat diet (HFD)-induced body weight gain in ovariectomized mice during an 8-week treatment period. Key results mGIPAnt-1 showed competitive antagonistic properties to the GIP receptor (GIPR) in vitro as it inhibited GIP-induced cAMP accumulation in COS-7 cells. Furthermore, mGIPAnt-1 was capable of inhibiting GIP-induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half-life of 7.2 hours in C57Bl6 female mice. Finally, sub-chronic treatment with mGIPAnt-1 in ovariectomized HFD mice resulted in a reduction of body weight and fat mass. Conclusion and Implications mGIPAnt-1 successfully inhibited acute GIP-induced effects in vitro and in vivo and sub-chronically induces resistance to HFD-induced weight gain in ovariectomized mice. Our results support the development of GIP antagonists for the therapy of obesity.


2020 ◽  
Vol 11 (2) ◽  
pp. 2083-2089
Author(s):  
Nabeel K ◽  
Asra Fathima ◽  
Farhath Khanum ◽  
Manjula S N ◽  
Mruthunjaya K ◽  
...  

The present study was aimed to evaluate the anti-obesity property of Tamarindus indica seed extract (TSE) on high fat-fed obese rats. TSE was prepared by cold maceration method and qualitative phytochemical studies had been carried out. In vitro cell viability assay (MTT assay) was and oil red staining for evaluating the lipid accumulation in cells was carried out using 3T3-L1 cells, and leptin levels was evaluated by ELISA. In-vivo Obesity was induced in experimental rats by administration of a high-fat diet for 04 weeks. The anti-obesity effect was screened by oral administration of TSE at two different dose levels i.e., 250 and 500mg/kg b. Wt. Along with a high-fat diet for a period of 04 weeks. The anti-obesity activity is estimated in terms of body weight gain, serum triglycerides (TG), Total cholesterol (TC). In -vitro studies revealed that the TSE has no cytotoxic effect, Administration of a high-fat diet for 04 weeks significantly increased the body weight, serum triglycerides, cholesterol. Upon treatment with TSE, a significant dose-dependent alteration in body weight, triglycerides, cholesterol levels were observed, inferring the anti-obesity property of Tamarindus seed extract.


2020 ◽  
Vol 21 (22) ◽  
pp. 8537
Author(s):  
Sung Mun Bae ◽  
Meiqi Fan ◽  
Young-Jin Choi ◽  
Yujiao Tang ◽  
Gwanghui Jeong ◽  
...  

The aim of this study was to identify an anti-obesity peptide from Allomyrina dichotoma and investigate the lipid metabolic mechanism. Enzymatically hydrolyzed A. dichotoma larvae were further separated using tangential flow filtration and consecutive chromatographic processes. Finally, an anti-obesity peptide that showed the highest inhibitory effect on lipid accumulation was obtained, and the sequence was Glu-Ile-Ala-Gln-Asp-Phe-Lys-Thr-Asp-Leu (EIA10). EIA10 decreased lipid aggregation in vitro and significantly reduced the accumulation of body weight gain, liver weight, and adipose tissue weight in high-fat-fed mice. Compared with the control group, the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL), insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in the high-fat diet (HFD) group increased significantly, and the content of high-density lipoprotein cholesterol (HDL) in the serum decreased significantly. On the contrary, the levels of TC, TG, and insulin in the EIA10 group decreased significantly, and the HDL content increased significantly compared with the HFD group. Additionally, EIA10 dramatically decreased mRNA and protein levels of transcription factors involved in lipid adipogenesis. Taken together, our results suggest that EIA10 could be a promising agent for the treatment and prevention of obesity.


2019 ◽  
Vol 7 (7) ◽  
pp. 194 ◽  
Author(s):  
Kai Zhu ◽  
Fang Tan ◽  
Jianfei Mu ◽  
Ruokun Yi ◽  
Xianrong Zhou ◽  
...  

Sichuan pickle is a traditional fermented food in China which is produced by the spontaneous fermentation of Chinese cabbage. In this study, the anti-obesity effects of a new lactic acid bacterium (Lactobacillus fermentum CQPC05, LF-CQPC05) isolated from Sichuan pickles were assessed in vivo. An obese animal model was established in mice by inducing obesity with high-fat diet. Both serum and tissues were collected from the mice, and then subjected to qPCR and Western blot analyses. The results showed that LF-CQPC05 could decrease the values of hepatosomatic, epididymal fat, and perirenal fat indices that were induced by a high-fat diet in mice. Moreover, LF-CQPC05 reduced the levels of alanine aminotransferase (ALT), aspartate aminotransaminase (AST), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), and increased the level of high-density lipoprotein cholesterol (HDL-C) in both serum samples and liver tissues of obese mice fed with a high-fat diet. Pathological observations demonstrated that LF-CQPC05 could alleviate the obesity-induced pathological changes in the liver tissue of mice, and reduce the degree of adipocyte enlargement. The results of qPCR and Western blot analyses further indicated that LF-CQPC05 upregulated the mRNA and protein expression levels of lipoprotein lipase (LPL), PPAR-α: peroxisome proliferator-activated receptor-alpha (PPAR-α), (cholesterol 7 alpha-hydroxylase) CYP7A1, and carnitine palmitoyltransferase 1 (CPT1A), and downregulated the expression levels of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and CCAAT enhancer-binding protein alpha (C/EBP-α) in both liver tissue and epididymal adipose tissue. Taken altogether, this study reveals that LF-CQPC05 can effectively inhibit high-fat diet-induced obesity. Its anti-obesity effect is comparable to that of l-carnitine, and is superior to that of Lactobacillus delbrueckii subsp. bulgaricus, a common strain used in the dairy industry. Therefore, LF-CQPC05 is a high-quality microbial strain with probiotic potential.


Sign in / Sign up

Export Citation Format

Share Document