Chrysanthemum indicum Inhibits Adipogenesis and Activates the AMPK Pathway in High-Fat-Diet-Induced Obese Mice

2018 ◽  
Vol 46 (01) ◽  
pp. 119-136 ◽  
Author(s):  
Sarmila Nepali ◽  
Ji-Yun Cha ◽  
Hyeon-Hui Ki ◽  
Hoon-Yeon Lee ◽  
Young-Ho Kim ◽  
...  

Chrysanthemum indicum (CI) is widely distributed in China and many parts of the tropical world, and has been reported to have antibacterial, antiviral, anti-oxidant and immunomodulatory effects, but no information is available on its effects on high fat diet (HFD)-induced obesity. This was undertaken to investigate the mechanism responsible for the effect of ethyl acetate fraction of CI (CIEA) on adipogenesis, in vitro and in vivo models of obesity. In the in vitro study, differentiating 3T3-L1 cells were treated with media to initiate differentiation (MDI) in the presence or absence of CIEA with different concentrations, and in the in vivo study, C57BL/6 mice were fed with HFD and administered CIEA daily for six weeks. Garcinia cambogia (GC) was used as the positive control, and was administered in the same manner as CIEA. Results showed CIEA reduced HFD-induced body weight gain, epididymal white adipose tissue (eWAT), and liver weight. In addition, CIEA significantly decreased serum lipid profiles, including total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDLc) and increased high density lipoprotein cholesterol (HDLc) levels. Furthermore, CIEA also reduced leptin levels and increased adiponectin levels in serum, and significantly decreased peroxisome proliferator-activated receptor [Formula: see text] (PPAR[Formula: see text]) and CCAAT/enhancer-binding protein (C/EPBs) levels, but increased PPAR[Formula: see text] level and the phosphorylation of AMP-activated protein kinase (AMPK) in eWATs and in the liver tissues of HFD fed obese mice. Taken together, these results indicate CIEA might be beneficial for preventing obesity.

Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 637 ◽  
Author(s):  
Yuling Ding ◽  
Lei Wang ◽  
SeungTae Im ◽  
Ouibo Hwang ◽  
Hyun-Soo Kim ◽  
...  

Diphlorethohydroxycarmalol (DPHC) is one of the most abundant bioactive compounds in Ishige okamurae. The previous study suggested that DPHC possesses strong in vitro anti-obesity activity in 3T3-L1 cells. However, the in vivo anti-obesity effect of DPHC has not been determined. The current study explored the effect of DPHC on high-fat diet (HFD)-induced obesity in C57BL/6J mice. The results indicated that oral administration of DPHC (25 and 50 mg/kg/day for six weeks) significantly and dose-dependently reduced HFD-induced adiposity and body weight gain. DPHC not only decreased the levels of triglyceride, low-density lipoprotein cholesterol, leptin, and aspartate transaminase but also increased the level of high-density lipoprotein cholesterol in the serum of HFD mice. In addition, DPHC significantly reduced hepatic lipid accumulation by reduction of expression levels of the critical enzymes for lipogenesis including SREBP-1c, FABP4, and FAS. Furthermore, DPHC remarkably reduced the adipocyte size, as well as decreased the expression levels of key adipogenic-specific proteins and lipogenic enzymes including PPARγ, C/EBPα, SREBP-1c, FABP4, and FAS, which regulate the lipid metabolism in the epididymal adipose tissue (EAT). Further studies demonstrated that DPHC significantly stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in both liver and EAT. These results demonstrated that DPHC effectively prevented HFD-induced obesity and suggested that DPHC could be used as a potential therapeutic agent for attenuating obesity and obesity-related diseases.


2020 ◽  
Author(s):  
Liyu Zhou ◽  
Jun Long ◽  
Yuting Sun ◽  
Weikai Chen ◽  
Runze Qiu ◽  
...  

Abstract Background Atherosclerosis (AS), which characterized with the accumulation of lipids on the vessel wall, is the pathological basis of many cardiovascular diseases (CVD) and seriously threatens human health. Resveratrol (RES) has been reported to be benefit for AS treatment. This research aimed to observe the effects of RES on AS induced by high-fat diet (HFD) and LPS in ApoE -/- mice and investigate the underlying mechanism. Methods ApoE -/- mice were fed with HFD companied with LPS to induce AS and RES was administrated for 20 weeks. Splenic CD4 + T cells were cultured and treated with anti-CD3/CD28 together with LPS, and RES was added. Serum lipids and the atherosclerotic areas of aortas were detected. The activation of CD4 + T cells were investigated both in vivo and in vitro and the expression of DNA methyltransferases (Dnmt) in CD4 + T cells were measured. Results In vivo, administration of RES prevented HFD and LPS induced dysfunction of serum lipids including TC (total cholesterol), TG (triglyceride), LDL-C (low density lipoprotein cholesterol) and HDL-C (high density lipoprotein cholesterol), ameliorated the thickened coronary artery wall and decreased the areas of atherosclerotic lesion on aortas. Besides, RES decreased the number of CD4 + T cells in peripheral blood, decreased the expression of CD25 and CD44, but not affected the expression of L-selectin (CD62L). In vitro, RES decreased the expression of Ki67, CD25 and CD44 in CD4 + T cells. Moreover, RES increased the secretion of IL-2, IL-10 and TGF-β1, decreased IL-6. In addition, RES decreased both the mRNA and protein level of Dnmt1 and Dnmt3b in CD4 + T cells. Conclusion These results indicated that RES ameliorated AS induced by HFD companied with LPS in ApoE -/- mice and inhibited the proliferation and activation of CD4 + T cells by regulating the expression of Dnmt1 and Dnmt3b.


2020 ◽  
Author(s):  
Liyu Zhou ◽  
Jun Long ◽  
Yuting Sun ◽  
Weikai Chen ◽  
Runze Qiu ◽  
...  

Abstract Background: Atherosclerosis (AS), which characterized with the accumulation of lipids on the vessel wall, is the pathological basis of many cardiovascular diseases (CVD) and seriously threatens human health. Resveratrol (RES) has been reported to be benefit for AS treatment. This research aimed to observe the effects of RES on AS induced by high-fat diet (HFD) and LPS in ApoE-/- mice and investigate the underlying mechanism.Methods: ApoE-/- mice were fed with HFD companied with LPS to induce AS and RES was administrated for 20 weeks. Splenic CD4+ T cells were cultured and treated with anti-CD3/CD28 together with LPS, and RES was added. Serum lipids and the atherosclerotic areas of aortas were detected. The activation of CD4+ T cells were investigated both in vivo and in vitro and the expression of DNA methyltransferases (Dnmt) in CD4+ T cells were measured. Results: In vivo, administration of RES prevented HFD and LPS induced dysfunction of serum lipids including TC (total cholesterol), TG (triglyceride), LDL-C (low density lipoprotein cholesterol) and HDL-C (high density lipoprotein cholesterol), ameliorated the thickened coronary artery wall and decreased the areas of atherosclerotic lesion on aortas. Besides, RES decreased the number of CD4+ T cells in peripheral blood, decreased the expression of CD25 and CD44, but not affected the expression of L-selectin (CD62L). In vitro, RES decreased the expression of Ki67, CD25 and CD44 in CD4+ T cells. Moreover, RES increased the secretion of IL-2, IL-10 and TGF-β1, decreased IL-6. In addition, RES decreased both the mRNA and protein level of Dnmt1 and Dnmt3b in CD4+ T cells.Conclusion: These results indicated that RES ameliorated AS induced by HFD companied with LPS in ApoE-/- mice, inhibited the proliferation and activation of CD4+ T cells and regulated the expression of Dnmt1 and Dnmt3b.


2020 ◽  
Vol 39 (8) ◽  
pp. 1005-1018 ◽  
Author(s):  
I Cinar ◽  
Z Halici ◽  
B Dincer ◽  
B Sirin ◽  
E Cadirci

The presence of 5-HT7r’s in both human and rat cardiovascular and immune tissues and their contribution to inflammatory conditions prompted us to hypothesize that these receptors contribute in acute myocardial infarction (MI) with underlying chronic endothelial dysfunction. We investigated the role of 5-HT7 receptors on heart tissue that damaged by isoproterenol (ISO)-induced MI in rats with high-fat diet (HFD). In vitro and in vivo effects of 5-HT7r agonist (LP44) and antagonist (SB269970) have been investigated on the H9C2 cell line and rats, respectively. For in vivo analyses, rats were fed with HFD for 8 weeks and after this period ISO-induced MI model has been applied to rat. To investigate the role of 5-HT7r’s, two different doses of LP44 and SB269970 were evaluated and compared with standard hypolipidemic agent, atorvastatin. In vitro studies showed that LP44 has protective and proliferative effects on rat cardiomyocytes. Also in in vivo studies stimulating 5-HT7r’s by LP44 improved blood lipid profile (decreased total cholesterol, low-density lipoprotein-C, and triglyceride, increased high-density lipoprotein), decreased cardiac damage markers (creatine kinase and troponin-I), and corrected inflammatory status (tumor necrosis factor-α, interleukin-6). Our results showed significant improvement in LP44 administered rats in terms of histopathologic analyses. In damaged tissues, 5-HT7 mRNA expression increased and agonist administration decreased this elevation significantly. We determined for the first time that 5-HT7r’s are overexpressed in ISO-induced MI of rats with underlying HFD-induced endothelial dysfunction. Restoration of this overexpression by LP44, a 5-HT7r agonist, ameliorated heart tissue in physiopathologic, enzymatic, and molecular level, showing the cardiac role of these receptors and suggesting them as future potential therapeutic targets.


2017 ◽  
Vol 4 (11) ◽  
pp. 170917 ◽  
Author(s):  
Yanyun Pan ◽  
Dandan Zhao ◽  
Na Yu ◽  
Tian An ◽  
Jianan Miao ◽  
...  

Curcumin is an active component derived from Curcuma longa L. which is a traditional Chinese medicine that is widely used for treating metabolic diseases through regulating different molecular pathways. Here, in this study, we aimed to comprehensively investigate the effects of curcumin on glycolipid metabolism in vivo and in vitro and then determine the underlying mechanism. Male C57BL/6 J obese mice and 3T3-L1 adipocytes were used for in vivo and in vitro study, respectively. Our results demonstrated that treatment with curcumin for eight weeks decreased body weight, fat mass and serum lipid profiles. Meanwhile, it lowered fasting blood glucose and increased the insulin sensitivity in high-fat diet-induced obese mice. In addition, curcumin stimulated lipolysis and improved glycolipid metabolism through upregulating the expressions of adipose triglyceride lipase and hormone-sensitive lipase, peroxisome proliferator activated receptor γ/α (PPARγ/α) and CCAAT/enhancer binding proteinα (C/EBPα) in adipose tissue of the mice. In differentiated 3T3-L1 cells, curcumin reduced glycerol release and increased glucose uptake via upregulating PPARγ and C/EBPα. We concluded that curcumin has the potential to improve glycolipid metabolism disorders caused by obesity through regulating PPARγ signalling pathway.


Author(s):  
Woo Nam ◽  
Seok Hyun Nam ◽  
Sung Phil Kim ◽  
Carol Levin ◽  
Mendel Friedman

Abstract Background The body responds to overnutrition by converting stem cells to adipocytes. In vitro and in vivo studies have shown polyphenols and other natural compounds to be anti-adipogenic, presumably due in part to their antioxidant properties. Purpurin is a highly antioxidative anthraquinone and previous studies on anthraquinones have reported numerous biological activities in cells and animals. Anthraquinones have also been used to stimulate osteoblast differentiation, an inversely-related process to that of adipocyte differentiation. We propose that due to its high antioxidative properties, purpurin administration might attenuate adipogenesis in cells and in mice. Methods Our study will test the effect purpurin has on adipogenesis using both in vitro and in vivo models. The in vitro model consists of tracking with various biomarkers, the differentiation of pre-adipocyte to adipocytes in cell culture. The compound will then be tested in mice fed a high-fat diet. Murine 3T3-L1 preadipocyte cells were stimulated to differentiate in the presence or absence of purpurin. The following cellular parameters were measured: intracellular reactive oxygen species (ROS), membrane potential of the mitochondria, ATP production, activation of AMPK (adenosine 5′-monophosphate-activated protein kinase), insulin-induced lipid accumulation, triglyceride accumulation, and expression of PPARγ (peroxisome proliferator activated receptor-γ) and C/EBPα (CCAAT enhancer binding protein α). In vivo, mice were fed high fat diets supplemented with various levels of purpurin. Data collected from the animals included anthropometric data, glucose tolerance test results, and postmortem plasma glucose, lipid levels, and organ examinations. Results The administration of purpurin at 50 and 100 μM in 3T3-L1 cells, and at 40 and 80 mg/kg in mice proved to be a sensitive range: the lower concentrations affected several measured parameters, whereas at the higher doses purpurin consistently mitigated biomarkers associated with adipogenesis, and weight gain in mice. Purpurin appears to be an effective antiadipogenic compound. Conclusion The anthraquinone purpurin has potent in vitro anti-adipogenic effects in cells and in vivo anti-obesity effects in mice consuming a high-fat diet. Differentiation of 3T3-L1 cells was dose-dependently inhibited by purpurin, apparently by AMPK activation. Mice on a high-fat diet experienced a dose-dependent reduction in induced weight gain of up to 55%.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bilal A. Zargar ◽  
Mubashir H. Masoodi ◽  
Bahar Ahmed ◽  
Showkat A. Ganie

The present study was intended to evaluate the effects of Paeonia emodi rhizome extracts on serum triglycerides (TGs), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), atherogenic index (AI), superoxide dismutase (SOD), and glutathione peroxidase (GPx). The plant was extensively examined for its in vitro antioxidant activity, and the preliminary phytochemical screening was carried out using standard protocols. Male Wistar rats were induced with hyperlipidemia using high-fat diet and were treated orally with hydroalcoholic and aqueous extracts at the dose of 200 mg/kg bw for 30 days. TGs, TC, LDL-c, and AI were significantly reduced while HDL-c, SOD, and GPx levels rose to a considerable extent. After subjecting to acute toxicity testing, the extracts were found to be safe. The observations suggest antihyperlipidemic and antioxidant potential of P. emodi in high-fat diet induced hyperlipidemic/oxidative stressed rats.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 269 ◽  
Author(s):  
Ji-Hyun Lee ◽  
Joo-Myung Moon ◽  
Yoon-Hee Kim ◽  
Bori Lee ◽  
Sang-Yong Choi ◽  
...  

Enzyme treatment of the foods and herbs has been used to improve the absorption rate the efficiency of plant extracts by converting the glycosides of the plant into aglycones. In this study, we examined the obesity-inhibitory effect of Chrysanthemum indicum Linné (CI) treated with enzymes such as viscozyme and tannase, which are highly efficient in converting glycosides to aglycones and then compared with untreated CI extract. The enzyme-treated CI ethanol extract (CIVT) was administered orally at various doses for 7 weeks in the high fat diet (HFD)-fed male mice. CIVT administration reduced the body weights, the food efficiency and the serum levels of lipid metabolism-related biomarkers, such as triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and leptin in the dose-dependent manner but not those high-density lipoprotein cholesterol (HDL-c) and adiponectin. CIVT also reduced considerably the total lipid amount in the liver and the size of adipocytes in the epididymal white adipose tissue (eWAT). CIVT effectively downregulated the adipogenesis-related transcription factors such as peroxisome proliferation activated receptor (PPAR)-γ and CCAAT/enhancer binding protein-α (C/EBP-α) but up-regulated PPAR-α, in the liver and eWAT. In addition, when compared to the enzyme-untreated CI 50% ethanol extract (CIEE), CIVT enhanced the reduction of body weight and lipid accumulation. Moreover, the viscozyme and tannase treatment of CI increased the flavonoid contents of the aglycone form. Therefore, our results support that the enzymatic treatment induced the production of aglycones for potentially suppressing the adipogenesis and lipid accumulation in HFD-fed mice. It suggests that CIVT might be an effective candidate for attenuating the over-weight and its related diseases.


2021 ◽  
Author(s):  
Hui-Ting Huang ◽  
Pei-Chun Chen ◽  
Po-See Chen ◽  
Wen-Tai Chiu ◽  
Yu-Min Kuo ◽  
...  

Abstract Microglia, the resident macrophages of the central nervous system (CNS), as well as astrocytes, are CNS glia cells to support neurodevelopment and neuronal function. Yet, their activation-associated with CNS inflammation is involved in the initiation and progression of neurological disorders. Mild inflammation in the periphery and glial activation called gliosis in the hypothalamic region, arcuate nucleus (ARC), are generally observed in the obese individuals and animal models. Thus, reduction in peripheral and central inflammation is considered as a strategy to lessen the abnormality of obesity-associated metabolic indices. In this study, we reported that acute peripheral challenge by inflammagen lipopolysaccharide (LPS) triggered an upregulation of hypothalamic dopamine type 2 receptor (D2R) expression, and chronic feeding by high fat diet (HFD) caused an increased levels of D2R in the ARC. The in vitro and in vivo studies indicated that a D2R antagonist named trifluoperazine (TFP) was able to suppress LPS-stimulated activation of microglia and effectively inhibited LPS-induced peripheral inflammation, as well as hypothalamic inflammation. Further findings showed daily peripheral administration intraperitoneally (i.p.) by TFP for 4 weeks was able to reduce the levels of plasma and hypothalamic tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in obese mice receiving HFD for 16 weeks. Moreover, plasma glucose and insulin were effectively decreased by daily treatment with TFP for 4 weeks. In parallel, microglia and astrocytes in the ARC was also inhibited by peripheral administration by TFP. According to our results, TFP has the ability to suppress HFD-induced hyperglycemia, inflammation and gliosis in hypothalamus.


2019 ◽  
Vol 7 (7) ◽  
pp. 194 ◽  
Author(s):  
Kai Zhu ◽  
Fang Tan ◽  
Jianfei Mu ◽  
Ruokun Yi ◽  
Xianrong Zhou ◽  
...  

Sichuan pickle is a traditional fermented food in China which is produced by the spontaneous fermentation of Chinese cabbage. In this study, the anti-obesity effects of a new lactic acid bacterium (Lactobacillus fermentum CQPC05, LF-CQPC05) isolated from Sichuan pickles were assessed in vivo. An obese animal model was established in mice by inducing obesity with high-fat diet. Both serum and tissues were collected from the mice, and then subjected to qPCR and Western blot analyses. The results showed that LF-CQPC05 could decrease the values of hepatosomatic, epididymal fat, and perirenal fat indices that were induced by a high-fat diet in mice. Moreover, LF-CQPC05 reduced the levels of alanine aminotransferase (ALT), aspartate aminotransaminase (AST), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), and increased the level of high-density lipoprotein cholesterol (HDL-C) in both serum samples and liver tissues of obese mice fed with a high-fat diet. Pathological observations demonstrated that LF-CQPC05 could alleviate the obesity-induced pathological changes in the liver tissue of mice, and reduce the degree of adipocyte enlargement. The results of qPCR and Western blot analyses further indicated that LF-CQPC05 upregulated the mRNA and protein expression levels of lipoprotein lipase (LPL), PPAR-α: peroxisome proliferator-activated receptor-alpha (PPAR-α), (cholesterol 7 alpha-hydroxylase) CYP7A1, and carnitine palmitoyltransferase 1 (CPT1A), and downregulated the expression levels of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and CCAAT enhancer-binding protein alpha (C/EBP-α) in both liver tissue and epididymal adipose tissue. Taken altogether, this study reveals that LF-CQPC05 can effectively inhibit high-fat diet-induced obesity. Its anti-obesity effect is comparable to that of l-carnitine, and is superior to that of Lactobacillus delbrueckii subsp. bulgaricus, a common strain used in the dairy industry. Therefore, LF-CQPC05 is a high-quality microbial strain with probiotic potential.


Sign in / Sign up

Export Citation Format

Share Document