scholarly journals A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing?

Medicina ◽  
2019 ◽  
Vol 55 (8) ◽  
pp. 439 ◽  
Author(s):  
Hamed Barabadi ◽  
Masoud Najafi ◽  
Hadi Samadian ◽  
Asaad Azarnezhad ◽  
Hossein Vahidi ◽  
...  

Background and objectives: Although studies have elucidated the significant biomedical potential of biogenic metallic nanoparticles (MNPs), it is very important to explore the hazards associated with the use of biogenic MNPs. Evidence indicates that genetic toxicity causes mutation, carcinogenesis, and cell death. Materials and Methods: Therefore, we systematically review original studies that investigated the genotoxic effect of biologically synthesized MNPs via in vitro and in vivo models. Articles were systematically collected by screening the literature published online in the following databases; Cochrane, Web of Science, PubMed, Scopus, Science Direct, ProQuest, and EBSCO. Results: Most of the studies were carried out on the MCF-7 cancer cell line and phytosynthesis was the general approach to MNP preparation in all studies. Fungi were the second most predominant resource applied for MNP synthesis. A total of 80.57% of the studies synthesized biogenic MNPs with sizes below 50 nm. The genotoxicity of Ag, Au, ZnO, TiO2, Se, Cu, Pt, Zn, Ag-Au, CdS, Fe3O4, Tb2O3, and Si-Ag NPs was evaluated. AgNPs, prepared in 68.79% of studies, and AuNPs, prepared in 12.76%, were the two most predominant biogenic MNPs synthesized and evaluated in the included articles. Conclusions: Although several studies reported the antigenotoxic influence of biogenic MNPs, most of them reported biogenic MNP genotoxicity at specific concentrations and with a dose or time dependence. To the best of our knowledge, this is the first study to systematically evaluate the genotoxicity of biologically synthesized MNPs and provide a valuable summary of genotoxicity data. In conclusion, our study implied that the genotoxicity of biologically synthesized MNPs varies case-by-case and highly dependent on the synthesis parameters, biological source, applied assay, etc. The gathered data are required for the translation of these nanoproducts from research laboratories to the clinical market.

2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 805-808
Author(s):  
Ravikumar Raju ◽  
Teja ◽  
Sravanathi P ◽  
Muthu Babu K

Breast cancer is the subsequent foremost reason of cancer death in a woman and ranks as the primary foremost reason of death in India. In its conduct, several measures and recommendation are considered. Homoeopathic medicines are one of the part of a corresponding, and another medicine is utilized for the treatment of cancer. The main purpose of the investigation is to evaluate the anticancer action of homoeopathic arrangements of Asterias rubens  on the basis of the similia principle. We directed an in vitro study using MTT assay to control the result of ultra diluted homoeopathic preparation in contradiction of two human breast glandular cancer cell lines(MCF-7 and MDA-MD- 231), frequently used for the breast cancer treatment, by testing the feasibility of breast cancer (MCF-7 and MDA-MD-231) cell line, with various attenuations of Asterias rubens  at 24 hrs. Multiple comparisons between tested reagents at different concentrations confirmed the significance of the said results. At a dilution of 1:25 6CH and 30CH potency shown superior activity on MCF-7 and no such significant changes on MDA-MD-231 at any dilutions As it fails to offer estrogen receptor(ER) Also progesterone receptor (PR) expression, and also HER2 (human epidermal development variable receptor2) so continuously a triple-negative breast cancer it will be a hostility manifestation for breast cancer with restricted medicine choices. However, further potency needs to be tested. These preliminary significant results warrant further in vitro and in vivo studies to estimate the possible of Asterias rubens  a medicine to treat breast cancer.


2019 ◽  
Vol 18 ◽  
pp. 153473541984804 ◽  
Author(s):  
Paola Lasso ◽  
Mónica Llano Murcia ◽  
Tito Alejandro Sandoval ◽  
Claudia Urueña ◽  
Alfonso Barreto ◽  
...  

Background: The tumor cells responsible for metastasis are highly resistant to chemotherapy and have characteristics of stem cells, with a high capacity for self-regeneration and the use of detoxifying mechanisms that participate in drug resistance. In vivo models of highly resistant cells allow us to evaluate the real impact of the immune response in the control of cancer. Materials and Methods: A tumor population derived from the 4T1 breast cancer cell line that was stable in vitro and highly aggressive in vivo was obtained, characterized, and determined to exhibit cancer stem cell (CSC) phenotypes (CD44+, CD24+, ALDH+, Oct4+, Nanog+, Sox2+, and high self-renewal capacity). Orthotopic transplantation of these cells allowed us to evaluate their in vivo susceptibility to chemo and immune responses induced after vaccination. Results: The immune response induced after vaccination with tumor cells treated with doxorubicin decreased the formation of tumors and macrometastasis in this model, which allowed us to confirm the immune response relevance in the control of highly chemotherapy-resistant ALDH+ CSCs in an aggressive tumor model in immunocompetent animals. Conclusions: The antitumor immune response was the main element capable of controlling tumor progression as well as metastasis in a highly chemotherapy-resistant aggressive breast cancer model.


2020 ◽  
Vol 20 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Xiaoxia Jin ◽  
Yingze Wei ◽  
Yushan Liu ◽  
Yali Chen ◽  
Bin Zhao ◽  
...  

Background and Purpose: Although limited by side effects and development of resistance, doxorubicin still represent the most common chemotherapy for breast cancer. Thus, the identification of critical molecules to alleviate doxorubicin resistance is crucial. Here, we provide a molecular rationale for the breast cancer patients potentially benefitting from doxorubicin based on the expression levels of SIRT1, a identified member of longevity genes. Methods: SIRT1-overexpressed and SIRT1-knockdown breast cancer cells were established to investigate the functions of SIRT1 in regulating doxorubicin resistance both in vitro and in vivo. Cell proliferation was analyzed via CCK8 assay, cell apoptosis was studied by TUNEL anslysis. Molecule interaction was analyzed through co-immunoprecipitation and immunofluorescence techniques. Sensibility to doxorubicin was assessed in vivo through nude mice tumorigenicity experiment. Results:: First, SIRT1 was found higher-expressed in breast cancer doxorubicin-resistant cells MCF-7/ADR than that in doxorubicin- sensitive cells MCF-7. Moreover, SIRT1-knockdown MCF-7/ADR cells showed higher susceptible to doxorubicin both in vitro and in vivo models, whereas overexpressing of SIRT1 obviously inhibited this phenotype. Accordingly, SIRT1 was found interacted with Akt, consequently promoted the activity of Akt in MCF-7/ADR cells in vitro and positively correlated with the expression of P-Akt in vivo. Reversion the activity of Akt partially downturned the doxorubicin-resistant effects mediated by SIRT1. Conclusion: This investigation suggested the value of SIRT1 as biomarker of response to doxorubicin, leading to the development of new tools for the management of breast cancer patients.


2021 ◽  
Vol 21 (5) ◽  
pp. 3035-3040
Author(s):  
Jin Cao ◽  
Qiwen Pan ◽  
Mingxue Zheng ◽  
Song Shen ◽  
Xueyong Qi

The development of novel sonosensitizers with safety and efficiency is a key problem in anti-tumor sonodynamic therapy. Phycocyanin (PC) has been proved to have the singlet oxygen radicals (ROS) generation ability, and the potential of PC as a novel sonosensitizer has been investigated. To overcome the disadvantages of PC in vivo, such as poor stability and low half-life, PC nanoparticles (PCNP) were prepared by the cross-linking method. According to the results, PCNP has been found with good morphology, good particle size distribution and good stability. Human breast cancer cell line MCF-7 was used to investigate PCNP cell uptake ability. ROS generation and cytotoxicity under ultrasonic irradiation (sonotoxicity) were also studied on this cell. Under the condition of 0.75 w/cm2 ultrasound, PCNP has a good ROS productivity and is equivalent to the sonotoxicity of the known sonosensitizer hematoporphyrin monomethyl Ether (HMME). In conclusion, PCNP is expected to be developed as an effective sonosensitizer for the sonodynamic therapy of tumors.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


Sign in / Sign up

Export Citation Format

Share Document