scholarly journals Breast Tumor Cells Highly Resistant to Drugs Are Controlled Only by the Immune Response Induced in an Immunocompetent Mouse Model

2019 ◽  
Vol 18 ◽  
pp. 153473541984804 ◽  
Author(s):  
Paola Lasso ◽  
Mónica Llano Murcia ◽  
Tito Alejandro Sandoval ◽  
Claudia Urueña ◽  
Alfonso Barreto ◽  
...  

Background: The tumor cells responsible for metastasis are highly resistant to chemotherapy and have characteristics of stem cells, with a high capacity for self-regeneration and the use of detoxifying mechanisms that participate in drug resistance. In vivo models of highly resistant cells allow us to evaluate the real impact of the immune response in the control of cancer. Materials and Methods: A tumor population derived from the 4T1 breast cancer cell line that was stable in vitro and highly aggressive in vivo was obtained, characterized, and determined to exhibit cancer stem cell (CSC) phenotypes (CD44+, CD24+, ALDH+, Oct4+, Nanog+, Sox2+, and high self-renewal capacity). Orthotopic transplantation of these cells allowed us to evaluate their in vivo susceptibility to chemo and immune responses induced after vaccination. Results: The immune response induced after vaccination with tumor cells treated with doxorubicin decreased the formation of tumors and macrometastasis in this model, which allowed us to confirm the immune response relevance in the control of highly chemotherapy-resistant ALDH+ CSCs in an aggressive tumor model in immunocompetent animals. Conclusions: The antitumor immune response was the main element capable of controlling tumor progression as well as metastasis in a highly chemotherapy-resistant aggressive breast cancer model.

2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2021 ◽  
Vol 22 (17) ◽  
pp. 9279
Author(s):  
Inés Martínez-Pena ◽  
Pablo Hurtado ◽  
Nuria Carmona-Ule ◽  
Carmen Abuín ◽  
Ana Belén Dávila-Ibáñez ◽  
...  

Background: Cancer metastasis is a deathly process, and a better understanding of the different steps is needed. The shedding of circulating tumor cells (CTCs) and CTC-cluster from the primary tumor, its survival in circulation, and homing are key events of the metastasis cascade. In vitro models of CTCs and in vivo models of metastasis represent an excellent opportunity to delve into the behavior of metastatic cells, to gain understanding on how secondary tumors appear. Methods: Using the zebrafish embryo, in combination with the mouse and in vitro assays, as an in vivo model of the spatiotemporal development of metastases, we study the metastatic competency of breast cancer CTCs and CTC-clusters and the molecular mechanisms. Results: CTC-clusters disseminated at a lower frequency than single CTCs in the zebrafish and showed a reduced capacity to invade. A temporal follow-up of the behavior of disseminated CTCs showed a higher survival and proliferation capacity of CTC-clusters, supported by their increased resistance to fluid shear stress. These data were corroborated in mouse studies. In addition, a differential gene signature was observed, with CTC-clusters upregulating cell cycle and stemness related genes. Conclusions: The zebrafish embryo is a valuable model system to understand the biology of breast cancer CTCs and CTC-clusters.


2021 ◽  
Vol 9 (10) ◽  
pp. e003468
Author(s):  
Huicheng Liu ◽  
Lili Bai ◽  
Liu Huang ◽  
Na Ning ◽  
Lin Li ◽  
...  

BackgroundTriple negative breast cancer (TNBC) is a subtype of breast cancers with poor prognosis and targeted drug therapies are limited. To develop novel and efficacious therapies for TNBC, we developed a bispecific antibody F7AK3 that recognizes both trophoblast cell surface antigen 2 (TROP2) and CD3 and evaluated its antitumor activities both in vitro and in vivo.MethodsThe binding affinities of F7AK3 to the two targets, TROP2 and CD3, were evaluated by surface plasmon resonance. Binding of F7AK3 to TNBC cells and T cells were evaluated by flow cytometry. Immunofluorescent staining was performed to demonstrate the interactions between T cells with TNBC cells. The cytotoxicity of T cells against TNBC cell lines and primary tumor cells mediated by F7AK3 were determined in vitro. In vivo antitumor activity of F7AK3 was investigated in a xenograft TNBC tumor model, using immunodeficient mice that were reconstituted with human peripheral blood mononuclear cells.ResultsWe demonstrated that F7AK3 binds specifically to human TROP2 and CD3 antigens, as well as TNBC cell lines and primary tumor cells. Human T cells can only be activated by F7AK3 in the presence of target tumor cells. F7AK3 recruits T cells to TROP2+ tumor cells in vitro and into tumor tissues in vivo. Antitumor growth activity of F7AK3 is observed in a xenograft TNBC tumor model.ConclusionThis study showed the antitumor potential of an anti-TROP2xCD3 bispecific antibody F7AK3 to TNBC tumor cells both in vitro and in vivo. These data demonstrate that F7AK3 has the potential to treat TNBC patients, which warrants further preclinical and clinical evaluation of the F7AK3 in advanced or metastatic TNBC patients.


2021 ◽  
Author(s):  
Viveka Nand Yadav ◽  
Micah K. Harris ◽  
Dana Messinger ◽  
Chase Thomas ◽  
Jessica R. Cummings ◽  
...  

Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive brain tumor with rare survival beyond two years. This poor prognosis is largely due to the tumor's highly infiltrative and invasive nature. Previous reports demonstrate upregulation of the transcription factor ID1 with H3K27M and ACVR1 mutations, but this has not been confirmed in human tumors or therapeutically targeted. We developed an in utero electroporation (IUE) murine H3K27M-driven tumor model, which demonstrates increased ID1 expression in H3K27M- and ACVR1-mutated tumor cells. In human tumors, elevated ID1 expression is associated with H3K27M/ACVR1-mutation, brainstem location, and reduced survival. The ID1 promoter demonstrates a similar active epigenetic state in H3K27M tumor cells and murine prenatal hindbrain cells. In the developing human brain, ID1 is expressed highest in oligo/astrocyte-precursor cells (OAPCs). These ID1+/SPARCL1+ cells share a transcriptional program with astrocyte-like (AC-like) DIPG cells, and demonstrate upregulation of gene sets involved with regulation of cell migration. Both genetic and pharmacologic [cannabidiol (CBD)] suppression of ID1 results in decreased DIPG cell invasion/migration in vitro and invasion/tumor growth in multiple in vivo models. CBD reduces proliferation through reactive oxygen species (ROS) production at low micromolar concentrations, which we found to be achievable in the murine brainstem. Further, pediatric high-grade glioma patients treated off-trial with CBD (n=15) demonstrate tumor ID1 reduction and improved overall survival compared to historical controls. Our study identifies that ID1 is upregulated in DIPG through reactivation of a developmental OAPC transcriptional state, and ID1-driven invasiveness of DIPG is therapeutically targetable with CBD.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 248 ◽  
Author(s):  
Aurore Claude-Taupin ◽  
Leïla Fonderflick ◽  
Thierry Gauthier ◽  
Laura Mansi ◽  
Jean-René Pallandre ◽  
...  

Early detection and targeted treatments have led to a significant decrease in mortality linked to breast cancer (BC), however, important issues need to be addressed in the future. One of them will be to find new triple negative breast cancer (TNBC) therapeutic strategies, since none are currently efficiently targeting this subtype of BC. Since numerous studies have reported the possibility of targeting the autophagy pathway to treat or limit cancer progression, we analyzed the expression of six autophagy genes (ATG9A, ATG9B, BECLIN1, LC3B, NIX and P62/SQSTM1) in breast cancer tissue, and compared their expression with healthy adjacent tissue. In our study, we observed an increase in ATG9A mRNA expression in TNBC samples from our breast cancer cohort. We also showed that this increase of the transcript was confirmed at the protein level on paraffin-embedded tissues. To corroborate these in vivo data, we designed shRNA- and CRISPR/Cas9-driven inhibition of ATG9A expression in the triple negative breast cancer cell line MDA-MB-436, in order to determine its role in the regulation of cancer phenotypes. We found that ATG9A inhibition led to an inhibition of in vitro cancer features, suggesting that ATG9A can be considered as a new marker of TNBC and might be considered in the future as a target to develop new specific TNBC therapies.


2005 ◽  
Vol 13 (6) ◽  
pp. 337-343 ◽  
Author(s):  
Bhawna Gupta ◽  
Tatiana S. Levchenko ◽  
Dmitry A. Mongayt ◽  
Vladimir P. Torchilin

2021 ◽  
Author(s):  
Xu Han ◽  
Xiujuan Qu ◽  
Beixing Liu ◽  
Yizhe Wang ◽  
Yang Cheng ◽  
...  

Abstract Background: Triple negative breast cancer (TNBC) is a tumor characterized by high recurrence and mortality, but without effective targeted therapy. It is urgent to explore new treatment strategy to improve the efficacy of TNBC therapy. Methods: Transcriptomic profiling datasets of TNBC were used for screening TNBC specific gene sets. Drug prediction was performed in Connectivity map (CMap) database. Molecular docking method was used for analyzing drug targets. In vitro and in vivo models of TNBC were constructed to examine the drug efficacy. Results: We screened out Mibefradil, a T-type Ca2+ channel blocker, might be a potential therapeutic drug for TNBC by transcriptomics and bioinformatics analysis, and verified that Mibefradil could inhibit the proliferation of TNBC cells by inducing apoptosis and cell cycle arrest. Furthermore, by network pharmacology and molecular docking analysis, AURKA was predicted as the most possible drug target of Mibefradil. Finally, it was proved that Mibefradil treatment could induce apoptosis by decreasing protein expression and phosphorylation level of AURKA in vitro and in vivo. Conclusions: Mibefradil played anti-cancer role in TNBC cells by targeting to AURKA to induce cell cycle and apoptosis. Our results repurposed Mibefradil as a potential targeted drug of TNBC and provided a fundamental research for a novel strategy TNBC treatment.


2020 ◽  
Author(s):  
Xinbo Qiao ◽  
Yixiao Zhang ◽  
Lisha Sun ◽  
Qingtian Ma ◽  
Jie Yang ◽  
...  

AbstractTumor metastasis remains the main cause of breast cancer-related deaths, especially the later breast cancer distant metastasis. This study assessed CD44−/CD24− tumor cells in 576 tissue specimens for associations with clinicopathological features and metastasis and then investigated the underlying molecular events. The data showed that level of CD44−/CD24− cells was associated with later postoperative distant tumor metastasis. Furthermore, CD44−/CD24− triple negative cells could spontaneously convert into CD44+/CD24− cancer stem cells (CSCs) with properties similar to CD44+/CD24− CSCs from parental MDA-MB-231 cells in terms of gene expression, tumor cell xenograft formation, and lung metastasis in vitro and in vivo. Single-cell RNA sequencing identified RHBDL2 as a regulator that enhanced spontaneous CD44+/CD24− CSC conversion, whereas knockdown of RHBDL2 expression inhibited YAP/NF-κB signaling and blocked spontaneous CD44−/CD24− cell conversion to CSCs. These data suggested that the level of CD44−/CD24− tumor cells could predict breast cancer prognosis, metastasis, and response to adjuvant therapy.


2014 ◽  
Vol 8 (Suppl 4) ◽  
pp. P22
Author(s):  
Klesia Madeira ◽  
Murilo Cerri ◽  
Renata Daltoé ◽  
Alice Herlinger ◽  
João Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document