scholarly journals Does Function Determine the Structure? Changes in Flexor Hallucis Longus Muscle and the Associated Performance Related to Dance Modality: A Cross-Sectional Study

Medicina ◽  
2020 ◽  
Vol 56 (4) ◽  
pp. 186
Author(s):  
Blanca De-la-Cruz-Torres ◽  
Irene Barrera-García-Martín ◽  
Mónica De la Cueva-Reguera ◽  
María Bravo-Aguilar ◽  
María Blanco-Morales ◽  
...  

Background and Objectives: Flexor hallucis longus pathology is one of the most common conditions of the ankle and foot in dancers, due to the high demand of dance movements performed in an extreme plantar flexion and dorsiflexion range of motion. The objectives of this study were to determine the bilateral differences between the thickness and cross-sectional area of the flexor hallucis longus muscle in dancers, to establish possible differences between dance modalities, and to analyze whether there is a correlation between ultrasonographic parameters or performance variables and the dance modality. Material and Methods: A sample of 50 (29 classical and 21 contemporary) full-time pre-professional female dancers were included in the study. The thickness and cross-sectional area of the flexor hallucis longus muscle were evaluated for both limbs using ultrasound imaging. The range of movement of the first metatarsophalangeal joint was measured using functional extension with maximal ankle plantarflexion, balance was measured in a unilateral stance with the heel raised, endurance was evaluated through a modified heel rise fatigue test, and a counter movement jump to assess the vertical jump performance was measured bilaterally. Results: There were no significant differences recorded between the dominant and non-dominant limbs for each variable, within both groups. Contemporary dancers showed a greater thickness and cross-sectional area of the flexor hallucis longus muscle than classical dancers. However, classical dancers showed an increase of balance, endurance, range of movement of the first metatarsophalangeal joint, and counter movement jump with respect to contemporary dancers. Conclusion: Bilateral symmetry was identified in all variables for both groups. The size and performance of the flexor hallucis longus muscle may be influenced by the specific nature of dance modality.

1991 ◽  
Vol 71 (5) ◽  
pp. 1921-1928 ◽  
Author(s):  
T. J. Walters ◽  
H. L. Sweeney ◽  
R. P. Farrar

Recently we observed that the flexor digitorum longus muscle of the Fischer 344 rat, which is comprised primarily of type IIb muscle, does not change in size, fiber type, or physiological characteristics during senescence [Am. J. Physiol. 258 (Cell Physiol. 27): C1031-C1035, 1990]. This muscle was utilized to determine whether a predominantly fast-twitch glycolytic muscle would respond to tonic electrical stimulation (ES) with the same degree of fiber-type transformation in aging and young rats. The extent of transformation was quantified by measuring the contractile and metabolic properties, as well as the fiber-type composition, of the flexor digitorum longus muscle after ES (10 Hz, 8 h/day) imposed on the tibial nerve for periods of 0–90 days in young adult (YG; 6–8 mo), middle-aged (MA; 16–18 mo), and senescent (SN; 26–28 mo) male Fischer 344 rats. Although ES induced a IIb-to-IIa fiber-type shift in all groups, in the SN rats the shift was significantly less pronounced at the intermediate time points and remained incomplete after 90 days, compared with YG and MA rats. ES resulted in a reduction in tetanic tension (Po), which in the YG and MA rats was due to a reduction in muscle cross-sectional area. In the SN rats the reduced Po was due to a combined loss of cross-sectional area and specific tension (Po, N/cm2). Contraction and half-relaxation times were largely unaffected by ES, and maximal velocity of unloaded shortening declined throughout ES in all groups.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 35 (6) ◽  
pp. 996-999 ◽  
Author(s):  
Eric J. Strauss ◽  
Kirk Campbell ◽  
Joseph A. Bosco

Background Strain injury to the adductor longus muscle is a common cause of groin pain in athletes and generally occurs in the proximal portion of the muscle, near its origin from the anterior aspect of the pubis. The composition and cross-sectional anatomy of this muscle's origin has not been previously described. Hypothesis We hypothesize that the adductor longus muscle origin is composed mainly of muscle fibers and that the tendon composes only a small part of the cross section at the origin of the muscle. Study Design Descriptive laboratory study. Methods We harvested 42 adductor longus muscles from 28 cadavers and measured the cross-sectional dimensions of the tendon with microcalipers. Next, we determined the relative contributions of the tendon and muscle fibers to the cross-sectional anatomy of the muscle using optical scanning. These 2 sets of measurements were obtained at 3 locations: at the muscle origin and 1.0 and 2.0 cm distal to the origin. Results The average length and width of the tendon was 11.6 and 3.7 mm, respectively, at the origin. The average cross-sectional areas of the tendon were 49.3, 27.9, and 25.7 mm2 at points 0.0, 1.0, and 2.0 cm from its origin, respectively. The origin of the adductor longus muscle was composed of 37.9% tendon and 62.1% muscle tissue. At 1.0 cm from the origin, the percentage of tendon decreased to 34%. At 2.0 cm from the origin, the tendon composed 26.7% of the cross section. Conclusion The cross-sectional area of the tendon of the adductor longus muscle is relatively small. The muscle origin is composed predominantly of direct attachment of muscle fibers. Clinical Relevance Knowledge of the cross-sectional anatomy of the adductor longus muscle at its origin may help clinicians better understand the complex nature of injuries in this area.


2021 ◽  
Author(s):  
Yuki Kusagawa ◽  
Toshiyuki Kurihara ◽  
Sumiaki Maeo ◽  
Takashi Sugiyama ◽  
Hiroaki Kanehisa ◽  
...  

Abstract Background The size of the plantar intrinsic and extrinsic foot muscles has been shown to be associated with toe flexor strength (TFS). Previous studies adopted the size of a limited plantar intrinsic foot muscle or a compartment containing several muscles as an independent variable for TFS. Among the plantar intrinsic and extrinsic foot muscles, therefore, it is unclear which muscle(s) primarily contributes to TFS development. The present study aimed to clarify this subject. Methods In 17 young adult men, a series of anatomical cross-sectional area of individual plantar intrinsic and extrinsic foot muscles was obtained along the foot length and the lower leg length, respectively, using the magnetic resonance imaging. Maximal anatomical cross-sectional area (ACSAmax) and muscle volume (MV) for each constituent muscle of the plantar intrinsic foot muscles (flexor hallucis brevis; flexor digitorum brevis, FDB; abductor hallucis; adductor hallucis oblique head, ADDH-OH; adductor hallucis transverse head, ADDH-TH; abductor digiti minimi; quadratus plantae) and extrinsic foot muscles (flexor hallucis longus; flexor digitorum longus) were measured. TFS was measured with a toe grip dynamometry. Results TFS was significantly associated with the ACSAmax for each of the ADDH-OH (r = 0.674, p = 0.003), ADDH-TH (r = 0.523, p = 0.031), and FDB (r = 0.492, p = 0.045), and the MV of the ADDH-OH (r = 0.582, p = 0.014). As for the ADDH-OH, the correlation coefficient with TFS was not statistically different between ACSAmax and MV (p = 0.189). Stepwise regression analysis indicated that ACSAmax and MV of the ADDH-OH alone explained 42% and 29%, respectively, of the variance in TFS. Conclusion The ADDH-OH is the key muscle that primarily contributes to TFS development among the plantar intrinsic and extrinsic foot muscles.


2012 ◽  
Vol 113 (10) ◽  
pp. 1545-1559 ◽  
Author(s):  
Tanja Miokovic ◽  
Gabriele Armbrecht ◽  
Dieter Felsenberg ◽  
Daniel L. Belavý

To better understand disuse muscle atrophy, via magnetic resonance imaging, we sequentially measured muscle cross-sectional area along the entire length of all individual muscles from the hip to ankle in nine male subjects participating in 60-day head-down tilt bed rest (2nd Berlin BedRest Study; BBR2–2). We hypothesized that individual muscles would not atrophy uniformly along their length such that different regions of an individual muscle would atrophy to different extents. This hypothesis was confirmed for the adductor magnus, vasti, lateral hamstrings, medial hamstrings, rectus femoris, medial gastrocnemius, lateral gastrocnemius, tibialis posterior, flexor hallucis longus, flexor digitorum longus, peroneals, and tibialis anterior muscles ( P ≤ 0.004). In contrast, the hypothesis was not confirmed in the soleus, adductor brevis, gracilis, pectineus, and extensor digitorum longus muscles ( P ≥ 0.20). The extent of atrophy only weakly correlated ( r = −0.30, P < 0.001) with the location of greatest cross-sectional area. The rate of atrophy during bed rest also differed between muscles ( P < 0.0001) and between some synergists. Most muscles recovered to their baseline size between 14 and 90 days after bed rest, but flexor hallucis longus, flexor digitorum longus, and lateral gastrocnemius required longer than 90 days before recovery occurred. On the basis of findings of differential atrophy between muscles and evidence in the literature, we interpret our findings of intramuscular atrophy to reflect differential disuse of functionally different muscle regions. The current work represents the first lower-limb wide survey of intramuscular differences in disuse atrophy. We conclude that intramuscular differential atrophy occurs in most, but not all, of the muscles of the lower limb during prolonged bed rest.


1994 ◽  
Vol 07 (03) ◽  
pp. 110-113 ◽  
Author(s):  
D. L. Holmberg ◽  
M. B. Hurtig ◽  
H. R. Sukhiani

SummaryDuring a triple pelvic osteotomy, rotation of the free acetabular segment causes the pubic remnant on the acetabulum to rotate into the pelvic canal. The resulting narrowing may cause complications by impingement on the organs within the pelvic canal. Triple pelvic osteotomies were performed on ten cadaver pelves with pubic remnants equal to 0, 25, and 50% of the hemi-pubic length and angles of acetabular rotation of 20, 30, and 40 degrees. All combinations of pubic remnant lengths and angles of acetabular rotation caused a significant reduction in pelvic canal-width and cross-sectional area, when compared to the inact pelvis. Zero, 25, and 50% pubic remnants result in 15, 35, and 50% reductions in pelvic canal width respectively. Overrotation of the acetabulum should be avoided and the pubic remnant on the acetabular segment should be minimized to reduce postoperative complications due to pelvic canal narrowing.When performing triple pelvic osteotomies, the length of the pubic remnant on the acetabular segment and the angle of acetabular rotation both significantly narrow the pelvic canal. To reduce post-operative complications, due to narrowing of the pelvic canal, overrotation of the acetabulum should be avoided and the length of the pubic remnant should be minimized.


2020 ◽  
Vol 0 (4) ◽  
pp. 19-24
Author(s):  
I.M. UTYASHEV ◽  
◽  
A.A. AITBAEVA ◽  
A.A. YULMUKHAMETOV ◽  
◽  
...  

The paper presents solutions to the direct and inverse problems on longitudinal vibrations of a rod with a variable cross-sectional area. The law of variation of the cross-sectional area is modeled as an exponential function of a polynomial of degree n . The method for reconstructing this function is based on representing the fundamental system of solutions of the direct problem in the form of a Maclaurin series in the variables x and λ. Examples of solutions for various section functions and various boundary conditions are given. It is shown that to recover n unknown coefficients of a polynomial, n eigenvalues are required, and the solution is dual. An unambiguous solution was obtained only for the case of elastic fixation at one of the rod’s ends. The numerical estimation of the method error was made using input data noise. It is shown that the error in finding the variable crosssectional area is less than 1% with the error in the eigenvalues of longitudinal vibrations not exceeding 0.0001.


Author(s):  
S.Sh. Gammadaeva ◽  
M.I. Misirkhanova ◽  
A.Yu. Drobyshev

The study analyzed the functional parameters of nasal breathing, linear parameters of the nasal aperture, nasal cavity and nasopharynx, volumetric parameters of the upper airways in patients with II and III skeletal class of jaw anomalies before and after orthognathic surgery. The respiratory function of the nose was assessed using a rhinomanometric complex. According to rhinoresistometry data, nasal resistance and hydraulic diameter were assessed. According to the data of acoustic rhinometry, the minimum cross-sectional area along the internal valve, the minimum cross-sectional area on the head of the inferior turbinate and nasal septum and related parameters were estimated. According to the CBCT data, the state of the nasal septum, the inferior turbinates, the nasal aperture, the state of the nasal cavity, and the linear values of the upper respiratory tract (nasopharynx) were analyzed. The patients were divided into 4 groups according to the classification of the patency of the nasal passages by


Sign in / Sign up

Export Citation Format

Share Document