scholarly journals UHPLC-HRMS and GC-MS Screening of a Selection of Synthetic Cannabinoids and Metabolites in Urine of Consumers

Medicina ◽  
2020 ◽  
Vol 56 (8) ◽  
pp. 408 ◽  
Author(s):  
Manuela Pellegrini ◽  
Emilia Marchei ◽  
Esther Papaseit ◽  
Magí Farré ◽  
Simona Zaami

Background and Objectives: The use of synthetic cannabinoids has increased around the world. As a result, the implementation of accurate analysis in human biological matrices is relevant and fundamental. Two different analytical technologies, ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) and high-sensitivity gas chromatography-mass spectrometry (GC-MS) were used for the determination of three synthetic cannabinoids JWH-122, JWH 210, UR-144 and their metabolites in urine of consumers. Materials and Methods: Sample preparation included an initial hydrolysis with β-glucuronidase and liquid-liquid extraction. The UHPLC-HRMS method included a Kinetex 2.6 u Biphenyl 100A (100 × 2.1 mm, 2.6 μm) (Phenomenex, Italy) column with a gradient mobile phase consisting of mobile phase A (ammonium formate 2mM in water, 0.1% formic acid) and mobile phase B (ammonium formate 2mM in methanol/acetonitrile 50:50 (v/v), 0.1% formic acid) and a full-scan data-dependent MS2 (ddMS2) mode was used (mass range 100–1000 m/z). The GC-MS method employed an ultra-Inert Intuvo GC column (HP-5MS UI, 30 m × 250 µm i.d, film thickness 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) and electron-impact (EI) mass spectra were recorded in total ion monitoring mode (scan range 40–550 m/z). Results: Both methods have been successfully used for screening of parent synthetic cannabinoids and their metabolites in urine samples of consumers. Conclusions: The screening method applied JWH-122, JWH-210, UR-144 and their metabolites in urine of consumers can be applied to other compounds of the JWH family.

2020 ◽  
Vol 21 (24) ◽  
pp. 9414
Author(s):  
Nunzia La Maida ◽  
Manuela Pellegrini ◽  
Esther Papaseit ◽  
Clara Pérez-Mañá ◽  
Lourdes Poyatos ◽  
...  

The consumption of synthetic cannabinoids (SCs) has significantly increased in the last decade and the analysis of SCs and their metabolites in human specimens is gaining interest in clinical and forensic toxicology. A pilot study has been carried out using a combination of an initial last generation gas chromatography-mass spectrometry (GC-MS) screening method for the determination of JWH-122, JWH-210, UR-144) in oral fluid (OF) of consumers and an ultra-high performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS) confirmatory method for the quantification of the parent compounds and their metabolites in the same biological matrix. OF samples were simply liquid-liquid extracted before injecting in both chromatographic systems. The developed methods have been successfully validated and were linear from limit of quantification (LOQ) to 50 ng/mL OF. Recovery of analytes was always higher than 70% and matrix effect always lower than 15% whereas intra-assay and inter-assay precision and accuracy were always better than 16%. After smoking 1 mg JWH-122 or UR-144 and 3 mg JWH-210, maximum concentration of 4.00–3.14 ng/mL JWH-122, 8.10–7.30 ng/mL JWH-210 ng/mL and 7.40 and 6.81 ng/mL UR-144 were measured by GC-MS and UHPLC-HRMS respectively at 20 min after inhalation. Metabolites of JWH 122 and 210 were quantified in OF by UHPLC-HRMS, while that of UR144 was only detectable in traces. Our results provide for the first time information about disposition of these SCs and their metabolites in consumers OF. Last generation GC-MS has proven useful tool to identify and quantify parent SCs whereas UHPLC-HRMS also confirmed the presence of SCs metabolites in the OF of SCs consumers.


2021 ◽  
Vol 22 (8) ◽  
pp. 4000
Author(s):  
Emilia Marchei ◽  
Maria Alias Ferri ◽  
Marta Torrens ◽  
Magí Farré ◽  
Roberta Pacifici ◽  
...  

The use of the new psychoactive substances is continuously growing and the implementation of accurate and sensible analysis in biological matrices of users is relevant and fundamental for clinical and forensic purposes. Two different analytical technologies, high-sensitivity gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) were used for a screening analysis of classic drugs and new psychoactive substances and their metabolites in urine of formed heroin addicts under methadone maintenance therapy. Sample preparation involved a liquid-liquid extraction. The UHPLC-HRMS method included Accucore™ phenyl Hexyl (100 × 2.1 mm, 2.6 μm, Thermo, USA) column with a gradient mobile phase consisting of mobile phase A (ammonium formate 2 mM in water, 0.1% formic acid) and mobile phase B (ammonium formate 2 mM in methanol/acetonitrile 50:50 (v/v), 0.1% formic acid) and a full-scan data-dependent MS2 (ddMS2) mode for substances identification (mass range 100–1000 m/z). The GC-MS method employed an ultra-Inert Intuvo GC column (HP-5MS UI, 30 m, 250 µm i.d, film thickness 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) and electron-impact (EI) mass spectra were recorded in total ion monitoring mode (scan range 40–550 m/z). Urine samples from 296 patients with a history of opioid use disorder were examined. Around 80 different psychoactive substances and/or metabolites were identified, being methadone and metabolites the most prevalent ones. The possibility to screen for a huge number of psychotropic substances can be useful in suspected drug related fatalities or acute intoxication/exposure occurring in emergency departments and drug addiction services.


2021 ◽  
Vol 5 ◽  
Author(s):  
Reyhaneh Armin ◽  
Sebastian Zühlke ◽  
Felix Mahnkopp-Dirks ◽  
Traud Winkelmann ◽  
Souvik Kusari

The One Strain Many Compounds approach (OSMAC) is a powerful and comprehensive method that enables the chemo-diversity evaluation of microorganisms. This is achieved by variations of physicochemical cultivation parameters and by providing biotic and abiotic triggers to mimic microorganisms' natural environment in the lab. This approach can reactivate the silent biosynthetic routes of specific metabolites typically not biosynthesized under standard laboratory conditions. In the present study, we combined the OSMAC approach with static headspace solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS), high-performance liquid chromatography-high-resolution tandem mass spectrometry (HPLC-HRMSn), and matrix-assisted laser desorption/ionization high-resolution mass spectrometry imaging (MALDI-HRMSI) to evaluate the chemoecological significance of an apple root-associated endophytic Streptomyces pulveraceus strain ES16. We employed the OSMAC approach by cultivating the endophyte in six different media conditions and performed temporal studies over 14 days. Analysis of the volatilome revealed that only under stressful conditions associated with sporulation, endophytic S. pulveraceus ES16 produces geosmin, a volatile semiochemical known to attract the soil arthropods Collembola (springtails) specifically. Subsequently, targeted metabolic profiling revealed polycyclic tetramate macrolactams (PTMs) production by the endophyte under stress, which are bioactive against various pathogens. Additionally, the endophyte produced the iron-chelating siderophore, mirubactin, under the same conditions. The structures of the compounds were evaluated using HRMSn and by comparison with literature data. Finally, MALDI-HRMSI revealed the produced compounds' spatial-temporal distribution over 14 days. The compounds were profusely secreted into the medium after production. Our results indicate that endophytic S. pulveraceus ES16 can release the signal molecule geosmin, chemical defense compounds such as the PTMs, as well as the siderophore mirubactin into the host plant apoplast or the soil for ecologically meaningful purposes, which are discussed.


2021 ◽  
Author(s):  
Kristy Scarfone ◽  
Nazlee Maghsoudi ◽  
Karen McDonald ◽  
Cristiana Stefan ◽  
Daniel R Beriault ◽  
...  

Abstract BackgroundThe opioid overdose crisis has generated innovative harm reduction and drug market monitoring strategies. In Toronto, Ontario, Canada, a multi-site drug checking service (DCS) pilot project was launched in October 2019. The project provides people who use drugs with information on the chemical composition of their substances, thereby increasing their capacity to make more informed decisions about their drug use and avoid overdose. DCS also provides real-time market monitoring to identify trends in the unregulated drug supply. MethodsSample data were obtained through analyses of drug and used paraphernalia samples submitted anonymously and free of charge to DCS in downtown Toronto from October 10, 2019 to April 9, 2020, representing the first six months of DCS implementation. Analyses were conducted in clinical laboratories using ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS), and liquid chromatography or gas chromatography-mass spectrometry (LC-MS, GC-MS) techniques. ResultsOverall, 555 samples were submitted, with 49% (271) of samples that were found to contain high-potency opioids, of which 87% (235) also contained stimulants. Benzodiazepines or related drugs were also found in 21% (116) of all samples, and synthetic cannabinoids in 1% (7) of all samples. Negative effects (including overdose) were reported for 12% (69) of samples submitted for analysis.ConclusionsToronto’s DCS identified a range of high-potency opioids with stimulants, benzodiazepines and related drugs, and a synthetic cannabinoid, AMB-FUBINACA. This information can inform a range of evidence-informed overdose prevention efforts.


2012 ◽  
Vol 9 (1) ◽  
pp. 63 ◽  
Author(s):  
Sara García-Salgado ◽  
Georg Raber ◽  
Reingard Raml ◽  
Christoph Magnes ◽  
Kevin A. Francesconi

Environmental contextAlthough organoarsenic compounds occur in marine organisms at high concentrations, the origin and role of these compounds is unknown. Arsenic-containing lipids (arsenolipids) are newly discovered compounds in fish. We identify a range of arsenolipids in algae and propose that algae are the origin of these unusual arsenic compounds in marine ecosystems. AbstractFourteen arsenolipids, including 11 new compounds, were identified and quantified in two species of brown algae, Wakame (Undaria pinnatifida) and Hijiki (Hizikia fusiformis), by high resolution mass spectrometry, high performance liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. Both algal species contained arsenosugar-phospholipids as the major type of arsenolipid, and arsenic-hydrocarbons were also significant components, particularly in Hijiki. The origin of the various arsenolipids, and the possible significance of their relative quantities, is briefly discussed.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4625
Author(s):  
Ye-Ji Kang ◽  
Hyeon-Cheol Jeong ◽  
Tae-Eun Kim ◽  
Kwang-Hee Shin

Metformin is the first-line medicine for the treatment of type 2 diabetes. Drug interactions between metformin and other drugs, food, or beverages cannot only cause changes in the pharmacokinetic profiles but also affect the efficacy of metformin. The purpose of this study was to develop a rapid and reliable bioanalytical method for the detection of plasma metformin concentration in humans. To remove interfering substances in plasma, acidified acetonitrile (acetonitrile containing 0.1% formic acid) was added to samples. Ultra-high-performance liquid chromatography (UHPLC) coupled with high resolution mass spectrometry (HRMS) was used to analyze metformin and its internal standard (metformin-d6). Analyte separation was performed on a BEH HILIC analytical column (100 × 2.1 mm, 1.7 μm) using a gradient elution of 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The total chromatographic run time was 2 min. The developed method was validated for its linearity, accuracy and precision, selectivity (signal of interfering substance; analyte, lower limit of quantification (LLOQ) ≤ 20%; IS, IS ≤ 5%), sensitivity (LLOQ, 5 ng/mL; S/N ratio ≥ 10), stability (low quality control (LQC, 15 ng/mL), 2.95–14.19%; high quality control (HQC, 1600 ng/mL), −9.49–15.10%), dilution integrity (diluted QC (4000 ng/mL); 10-folds diluted QC (400 ng/mL); 5-folds diluted QC (800 ng/mL); accuracy, 81.30–91.98%; precision, ≤4.47%), carry-over (signal of double blank; analyte, LLOQ ≤20%; IS, IS ≤5%), and matrix effect (LQC, 10.109%; HQC, 12.271%) under various conditions. The constructed calibration curves were shown linear in the concentration range of 5–2000 ng/mL, with within- and between-run precision values of <8.19% and accuracy in the range of 91.13–105.25%. The plasma metformin concentration of 16 healthy subjects was successfully measured by applying the validated bioanalytical method.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 887 ◽  
Author(s):  
Raquel Pérez-Míguez ◽  
María Castro-Puyana ◽  
Elena Sánchez-López ◽  
Merichel Plaza ◽  
María Luisa Marina

An untargeted metabolomics strategy using hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was developed in this work enabling the study of the coffee roasting process. Green coffee beans and coffee beans submitted to three different roasting degrees (light, medium, and strong) were analyzed. Chromatographic separation was carried out using water containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase A) and acetonitrile containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase B). A total of 93 molecular features were considered from which 31 were chosen as the most statistically significant using variable in the projection values. 13 metabolites were tentatively identified as potential biomarkers of the coffee roasting process using this metabolomic platform. Results obtained in this work were complementary to those achieved using orthogonal techniques such as reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) since only one metabolite was found to be common between HILIC-MS and RPLC-MS platforms (caffeoylshikimic acid isomer) and other between HILIC-MS and CE-MS platforms (choline). On the basis of these results, an untargeted metabolomics multiplatform is proposed in this work based on the integration of the three orthogonal techniques as a powerful tool to expand the coverage of the roasted coffee metabolome.


Sign in / Sign up

Export Citation Format

Share Document