scholarly journals The Upper Airway Microbiota, Environmental Exposures, Inflammation, and Disease

Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 823
Author(s):  
Ziyad Elgamal ◽  
Pratyush Singh ◽  
Patrick Geraghty

Along with playing vital roles in pathogen exclusion and immune system priming, the upper airways (UAs) and their microbiota are essential for myriad physiological functions such as conditioning and transferring inhaled air. Dysbiosis, a microbial imbalance, is linked with various diseases and significantly impedes the quality of one’s life. Daily inhaled exposures and/or underlying conditions contribute to adverse changes to the UA microbiota. Such variations in the microbial community exacerbate UA and pulmonary disorders via modulating inflammatory and immune pathways. Hence, exploring the UA microbiota’s role in maintaining homeostasis is imperative. The microbial composition and subsequent relationship with airborne exposures, inflammation, and disease are crucial for strategizing innovating UA diagnostics and therapeutics. The development of a healthy UA microbiota early in life contributes to normal respiratory development and function in the succeeding years. Although different UA cavities present a unique microbial profile, geriatrics have similar microbes across their UAs. This lost community segregation may contribute to inflammation and disease, as it stimulates disadvantageous microbial–microbial and microbial–host interactions. Varying inflammatory profiles are associated with specific microbial compositions, while the same is true for many disease conditions and environmental exposures. A shift in the microbial composition is also detected upon the administration of numerous therapeutics, highlighting other beneficial and adverse side effects. This review examines the role of the UA microbiota in achieving homeostasis, and the impact on the UAs of environmental airborne pollutants, inflammation, and disease.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Daniela Rosado ◽  
Raquel Xavier ◽  
Jo Cable ◽  
Ricardo Severino ◽  
Pedro Tarroso ◽  
...  

AbstractFish microbiota are intrinsically linked to health and fitness, but they are highly variable and influenced by both biotic and abiotic factors. Water temperature particularly limits bacterial adhesion and growth, impacting microbial diversity and bacterial infections on the skin and gills. Aquaculture is heavily affected by infectious diseases, especially in warmer months, and industry practices often promote stress and microbial dysbiosis, leading to an increased abundance of potentially pathogenic bacteria. In this regard, fish mucosa health is extremely important because it provides a primary barrier against pathogens. We used 16 rRNA V4 metataxonomics to characterize the skin and gill microbiota of the European seabass, Dicentrarchus labrax, and the surrounding water over 12 months, assessing the impact of water temperature on microbial diversity and function. We show that the microbiota of external mucosae are highly dynamic with consistent longitudinal trends in taxon diversity. Several potentially pathogenic genera (Aliivibrio, Photobacterium, Pseudomonas, and Vibrio) were highly abundant, showing complex interactions with other bacterial genera, some of which with recognized probiotic activity, and were also significantly impacted by changes in temperature. The surrounding water temperature influenced fish microbial composition, structure and function over time (days and months). Additionally, dysbiosis was more frequent in warmer months and during transitions between cold/warm months. We also detected a strong seasonal effect in the fish microbiota, which is likely to result from the compound action of several unmeasured environmental factors (e.g., pH, nutrient availability) beyond temperature. Our results highlight the importance of performing longitudinal studies to assess the impact of environmental factors on fish microbiotas.


2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Jutamat Klinsoda ◽  
Julia Vötterl ◽  
Qendrim Zebeli ◽  
Barbara U. Metzler-Zebeli

ABSTRACT The gut-lymph node axis is a critical player in the symbiotic relationship between gut microbiota and the host. However, little is known about the impact of diet-related bacterial shifts in the gut lumen on bacterial translocation into lymph nodes. Here, we (i) characterized changes in the viable microbiota composition along the ileal digesta-mucosa-lymph node axis and (ii) examined the effect of dietary phytase supplementation and lactic acid (LA) soaking of cereals on the bacterial taxonomy along this axis, together with their effect on the mucosal expression of innate immune and barrier function genes in pigs (n = 8/diet). After 18 days on diets, ileal digesta, mucosa, and ileocecal lymph nodes (ICLNs) were collected for RNA isolation and 16S rRNA-based high-resolution community profiling. Bacterial communities were dominated by Lactobacillaceae and Clostridiaceae, with clearly distinguishable profiles at the three sampling sites. Specific bacterial subsampling was indicated by enrichment of the ICLNs with Lactobacillaceae, Lachnospiraceae, Veillonellaceae, and Methanobacteriaceae and less Clostridiaceae, Pasteurellaceae, Helicobacteraceae, and Enterobacteriaceae compared to that of the mucosa. LA treatment of cereals reduced proteolytic taxa in the lumen, including pathobionts like Helicobacteraceae, Campylobacteraceae, and Fusobacteriaceae. When combined, phytase- and LA-treated cereals largely increased species richness, while the single treatments reduced Actinobacteria and Bacteroidetes in ICLNs and increased mucosal MUC2 expression. In contrast, phytase reduced mucosal CDH1 expression, indicating altered barrier function with potential effects on bacterial translocation. Overall, both treatments, although often differently, changed the viable microbiome along the digesta-mucosa-lymph node axis in the ileum, probably due to altered substrate availability and microbial-host interactions. IMPORTANCE A host’s diet largely determines the gut microbial composition and therefore may influence bacterial translocation into ICLNs. Due to its importance for cell metabolism, the intestinal phosphorus availability, which was modified here by phytase and LA treatment of cereals, affects the intestinal microbiota. Previous studies mainly focused on bacteria in the lumen. The novelty of this work resides mainly in that we report diet-microbe effects along the digesta-mucosa-ICLN axis and linked those effects to mucosal expression of barrier function genes as crucial components for host health. Lymph nodes can serve as reservoir of pathobionts; therefore, present diet-microbiome-host interactions have implications for food safety.


2008 ◽  
Vol 105 (5) ◽  
pp. 1471-1476 ◽  
Author(s):  
Andrew D. Ray ◽  
Toshiyuki Ogasa ◽  
Ulysses J. Magalang ◽  
John A. Krasney ◽  
Gaspar A. Farkas

The upper airway muscles play an important role in maintaining upper airway collapsibility, and the incidence of sleep-disordered breathing increases with age. We hypothesize that the increase in airway collapsibility with increasing age can be linked to changes in upper airway muscle mechanics and structure. Eight young (Y: 6 mo) and eight old (O: 30 mo) Fischer 344 rats were anesthetized and mechanically ventilated, and the pharyngeal pressure associated with flow limitation (Pcrit) was measured 1) with the hypoglossal (cnXII) nerve intact, 2) following bilateral cnXII denervation, and 3) during cnXII stimulation. With the cnXII intact, the upper airways of older rats were more collapsible compared with their younger counterparts [Pcrit = −7.1 ± 0.6 (SE) vs. −9.5 ± 0.7 cmH2O, respectively; P = 0.033]. CnXII denervation resulted in an increase in Pcrit such that Pcrit became similar in both groups (O: −4.2 ± 0.5 cmH2O; Y: −5.4 ± 0.5 cmH2O). In all rats, cnXII stimulation decreased Pcrit (less collapsible) in both groups (O: −11.3 ± 1.0 cmH2O; Y: −10.2 ± 1.0 cmH2O). The myosin heavy chain composition of the genioglossus muscle demonstrated a decrease in the percentage of the IIb isoform (38.3 ± 2.5 vs. 21.7 ± 1.7%; P < 0.001); in contrast, the sternohyoid muscle demonstrated an increase in the percentage of the IIb isoform (72.2 ± 2.5 vs. 58.4 ± 2.3%; P = 0.001) with age. We conclude that the upper airway becomes more collapsible with age and that the increase in upper airway collapsibility with age is likely related to altered neural control rather than to primary alterations in upper airway muscle structure and function.


2021 ◽  
Author(s):  
Lisa Miclotte ◽  
Ellen De Paepe ◽  
Qiqiong Li ◽  
Andreja Rajkovic ◽  
John Van Camp ◽  
...  

In the context of the potential health hazards related to food processing, dietary emulsifiers have been shown to alter the structure and function of the gut microbial community, both in vivo and in vitro. In mouse models, these emulsifier exposed gut microbiota were shown to contribute to gut inflammation. Several knowledge gaps remain to be addressed though. As such, the impact from a longer timeframe of exposure on the gut microbiota is not known and interindividual variability in microbiome response needs to be measured. To answer these research questions, in this study the faecal microbiota from two individuals, previously selected for high and low emulsifier sensitivity, were exposed to two concentrations of soy lecithin during a 7 day treatment phase in the dynamic mucosal simulator of the human intestinal microbial ecosystem (M-SHIME). The results showed mild effects from soy lecithin on the composition and functionality of these microbial communities, which depended on the original microbial composition. The effects also mostly levelled off after 3 days of exposure. The emulsifier sensitivity for which the microbiota were selected, was preserved. Some potentially concerning effects were also registered: butyrate levels, positively correlating with Faecalibacterium abundance, were lowered by soy lecithin. Also the abundance of the beneficial Bifidobacterium genus was lowered, while the abundance of the notorious unclassified Enterobacteriaceae was increased. Within the family of the unclassified Lachnospiraceae, several genera were either suppressed or stimulated. The effects that these microbial alterations would have on a living host is not yet certain, especially given the fact that large fractions of soy lecithins constituents can be absorbed. Nevertheless, choline and phosphatidylcholine, both primary and absorbable constituents of soy lecithin, have recently been linked to cardiovascular disease via the generation of TMA by the gut microbiota. Further studies that validate our findings and link them to potential health outcomes are thus justified.


2020 ◽  
Vol 9 (2) ◽  
pp. 297 ◽  
Author(s):  
Annie C. Lajoie ◽  
Anne-Louise Lafontaine ◽  
R. John Kimoff ◽  
Marta Kaminska

Obstructive sleep apnea (OSA) is a prevalent disorder characterized by recurrent upper airway obstruction during sleep resulting in intermittent hypoxemia and sleep fragmentation. Research has recently increasingly focused on the impact of OSA on the brain’s structure and function, in particular as this relates to neurodegenerative diseases. This article reviews the links between OSA and neurodegenerative disease, focusing on Parkinson’s disease, including proposed pathogenic mechanisms and current knowledge on the effects of treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ludek Sehnal ◽  
Elizabeth Brammer-Robbins ◽  
Alexis M. Wormington ◽  
Ludek Blaha ◽  
Joe Bisesi ◽  
...  

Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.


Author(s):  
Heidi M.-L. Wipf ◽  
Ling Xu ◽  
Cheng Gao ◽  
Hannah B. Spinner ◽  
John Taylor ◽  
...  

Soils play important roles in biological productivity. While past work suggests that microbes affect soil health and respond to agricultural practices, it is not well known how soil management shapes crop host microbiomes. To elucidate the impact of management on microbial composition and function in the sorghum microbiome, we performed 16S rRNA gene and ITS2 amplicon sequencing and metatranscriptomics on soil and root samples collected from a site in California’s San Joaquin Valley that is under long-term cultivation with 1) standard (ST) or no tilling (NT) and 2) cover-cropping (CC) or leaving the field fallow (NO). Our results revealed that microbial diversity, composition, and function change across tillage and cover type, with a heightened response in fungal communities, versus bacterial. Surprisingly, ST harbored greater microbial alpha diversity than NT, indicating that tillage may open niche spaces for broad colonization. Across management regimes, we observed class-level taxonomic level shifts. Additionally, we found significant functional restructuring across treatments, including enrichment for microbial lipid and carbohydrate transport and metabolism and cell motility with NT. Differences in carbon cycling were also observed, with increased prevalence of glycosyltransferase and glycoside hydrolase carbohydrate active enzyme families with CC. Lastly, treatment significantly influenced arbuscular mycorrhizal fungi, which had the greatest prevalence and activity under ST, suggesting that soil practices mediate known beneficial plant-microbe relationships. Collectively, our results demonstrate how agronomic practices impact critical interactions within the plant microbiome and inform future efforts to configure trait-associated microbiomes in crops. Importance While numerous studies show that farming practices can influence the soil microbiome, there are often conflicting results on how microbial diversity and activity respond to treatment. In addition, there is very little work published on how the corresponding crop plant microbiome is impacted. With bacteria and fungi known to critically affect soil health and plant growth, we concurrently compared how the practices of no and standard tillage, in combination with either cover-cropping or fallow fields, shape soil and plant-associated microbiomes between the two classifications. In determining not only the response to treatment in microbial diversity and composition, but for activity as well, this work demonstrates the significance of agronomic practice in modulating plant-microbe interactions, as well as encourages future work on the mechanisms involved in community assemblages supporting similar crop outcomes.


2021 ◽  
Vol 22 (18) ◽  
pp. 10052
Author(s):  
Lucía N. Peralta-Marzal ◽  
Naika Prince ◽  
Djordje Bajic ◽  
Léa Roussin ◽  
Laurent Naudon ◽  
...  

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome–host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.


2020 ◽  
Vol 5 (6) ◽  
pp. 1469-1481 ◽  
Author(s):  
Joseph A. Napoli ◽  
Carrie E. Zimmerman ◽  
Linda D. Vallino

Purpose Craniofacial anomalies (CFA) often result in growth abnormalities of the facial skeleton adversely affecting function and appearance. The functional problems caused by the structural anomalies include upper airway obstruction, speech abnormalities, feeding difficulty, hearing deficits, dental/occlusal defects, and cognitive and psychosocial impairment. Managing disorders of the craniofacial skeleton has been improved by the technique known as distraction osteogenesis (DO). In DO, new bone growth is stimulated allowing bones to be lengthened without need for bone graft. The purpose of this clinical focus article is to describe the technique and clinical applications and outcomes of DO in CFA. Conclusion Distraction can be applied to various regions of the craniofacial skeleton to correct structure and function. The benefits of this procedure include improved airway, feeding, occlusion, speech, and appearance, resulting in a better quality of life for patients with CFA.


2016 ◽  
Vol 1 (13) ◽  
pp. 162-168
Author(s):  
Pippa Hales ◽  
Corinne Mossey-Gaston

Lung cancer is one of the most commonly diagnosed cancers across Northern America and Europe. Treatment options offered are dependent on the type of cancer, the location of the tumor, the staging, and the overall health of the person. When surgery for lung cancer is offered, difficulty swallowing is a potential complication that can have several influencing factors. Surgical interaction with the recurrent laryngeal nerve (RLN) can lead to unilateral vocal cord palsy, altering swallow function and safety. Understanding whether the RLN has been preserved, damaged, or sacrificed is integral to understanding the effect on the swallow and the subsequent treatment options available. There is also the risk of post-surgical reduction of physiological reserve, which can reduce the strength and function of the swallow in addition to any surgery specific complications. As lung cancer has a limited prognosis, the clinician must also factor in the palliative phase, as this can further increase the burden of an already compromised swallow. By understanding the surgery and the implications this may have for the swallow, there is the potential to reduce the impact of post-surgical complications and so improve quality of life (QOL) for people with lung cancer.


Sign in / Sign up

Export Citation Format

Share Document