scholarly journals Operating Conditions Optimization via the Taguchi Method to Remove Colloidal Substances from Recycled Paper and Cardboard Production Wastewater

Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 170 ◽  
Author(s):  
Mayko Rannany S. Sousa ◽  
Jaime Lora-García ◽  
María-Fernanda López-Pérez ◽  
Asunción Santafé-Moros ◽  
José M. Gozálvez-Zafrilla

Optimization of the ultrafiltration (UF) process to remove colloidal substances from a paper mill’s treated effluent was investigated in this study. The effects of four operating parameters in a UF system (transmembrane pressure (TMP), cross-flow velocity (CFV), temperature and molecular weight cut-off (MWCO)) on the average permeate flux (Jv), organic matter chemical oxygen demand (COD) rejection rate and the cumulative flux decline (SFD), was investigated by robust experimental design using the Taguchi method. Analysis of variance (ANOVA) for an L9 orthogonal array were used to determine the significance of the individual factors, that is to say, to determine which factor has more and which less influence over the UF response variables. Analysis of the percentage contribution (P%) indicated that the TMP and MWCO have the greatest contribution to the average permeate flux and SFD. In the case of the COD rejection rate, the results showed that MWCO has the highest contribution followed by CFV. The Taguchi method and the utility concept were employed to optimize the multiple response variables. The optimal conditions were found to be 2.0 bar of transmembrane pressure, 1.041 m/s of the cross-flow velocity, 15 °C of the temperature, and 100 kDa MWCO. The validation experiments under the optimal conditions achieved Jv, COD rejection rate and SFD results of 81.15 L·m−2·h−1, 43.90% and 6.01, respectively. Additionally, SST and turbidity decreased by about 99% and 99.5%, respectively, and reduction in particle size from around 458–1281 nm to 12.71–24.36 nm was achieved. The field-emission scanning electron microscopy images under optimal conditions showed that membrane fouling takes place at the highest rate in the first 30 min of UF. The results demonstrate the validity of the approach of using the Taguchi method and utility concept to obtain the optimal membrane conditions for the wastewater treatment using a reduced number of experiments.

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
I. N. Widiasa ◽  
I. G. Wenten

Ultrafiltration (UF) is considered as a promising alternative to the traditional clarification techniques in the sugar industries. In this work, a hollow fiber UF membrane (polyacrylonitrile, MWCO 100 kDa) was used for clarification of cassava starch hydrolysate. The influence of various operating parameters, such as transmembrane pressure (TMP), cross flow velocity and pH hydrolysate on the membrane fouling was assessed. The results showed that TMP higher than 1.0 bar was not effective to improve flux. Increasing cross flow velocity was virtually effective to reduce permeate flux decline. The steady state flux, Jssincreased significantly when pH of the feed was adjusted to alkaline condition; however, this resulted in dark brown clarified glucose syrup. Operating at natural pH of 4.5, the membrane selectivity was close to 100%. Evaluation of hydraulic resistance indicated that concentration polarization and pore blocking were beyond approximately 50 and 40% of the total filtration resistance, respectively. Moreover, scanning electron microscopy showed that extensive fouling layer was deposited on the membrane surface. Finally, the developed cleaning procedure could restore membrane performance approximately 45% of its initial performance.


Author(s):  
Nina Zhou ◽  
A. G. Agwu Nnanna

The performance of cross flow hollow fiber ultrafiltration (UF) membrane with molecular weight cut off (MWCO) 100 kDaltons was studied in order to effectively remove suspended solids in wastewater. Experiments were carried out to investigate the influence of the several factors such as cross flow velocity, transmembrane pressure (TMP), water temperature, and concentration of suspended solids on the membrane performance. Several cleaning methods were applied to remove the fouling. The experimental results showed that increasing TMP, temperature and cross flow velocity all resulted in increasing permeate flux. It is observed that high TMP aggravated the fouling while high cross flow velocity alleviated the fouling. High concentrations of suspended solids led to the reduction of permeate flux. It is also found that both combination of chemical, back- and forward-washing as well as soaking cleaning methods effectively removed fouling and achieved high flux recovery. The suspended solids were effectively removed by our UF system, and the water quality is significantly improved after ultrafiltration.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Danu Ariono ◽  
Anita Kusuma Wardani ◽  
Putu Teta Prihartini Aryanti ◽  
Ahmad Nurul Hakim ◽  
I Gede Wenten

Wastewater from electroplating industries is usually contaminated with high concentration of hazardous materials, such as nickel, copper, and chromium. Therefore, the electroplating wastewater is one of the environmental problems that require a novel solution to reduce risks for human and environment. Ultrafiltration is a promising technology to overcome this problem due to its ability to reject all suspended solids. However, membrane fouling still becomes a major obstacle in ultrafiltration processes. Fouling reduces the permeate flux and increases membrane operational costs due to membrane cleaning. In this work, fouling mechanism that occurred in polyacrylonitrile based ultrafiltration for electroplating wastewater treatment was investigated. The effects of trans-membrane pressure (TMP) and cross flow velocity on fouling mechanism were also studied. The results showed that in the first 20 minutes, intermediate blocking was occurred on the membrane surface, while cake formation was happened for the rest of filtration time. These results were applied for all TMP and cross flow velocity.


2005 ◽  
Vol 70 (1) ◽  
pp. 107-114 ◽  
Author(s):  
S.S. Madaeni ◽  
H. Daneshvar

Membrane technologies in general and reverse osmosis in particular have been employed for the concentrating of solutions. In this study, the concentrating of a heat sensitive alizarin extracted from madder root was realized using an FT30 reverse osmosis membrane. The effects of cross flow velocity, transmembrane pressure and pH on the flux and rejection were studied. Increasing the transmembrane pressure increased the flux while the rejection was constant. At pH 7-8, the highest flux was achieved. This study showed that reverse osmosis is the process of choice for the concentrating of alizarin solutions. The optimum operating conditions were 1.0 m/s cross flow velocity, 16 bars transmembrane pressure and pH 7. The system was tested for 12 h without severe fouling problems.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 337-343 ◽  
Author(s):  
M. Héran ◽  
S. Elmaleh

High frequency reverse filtration was evaluated while microfiltering a bentonite suspension, biologically treated wastewater and an activated sludge suspension through a 0.2 μm tubular ceramic membrane. Better results were obtained with a conventional internal layer filtration element than with an external skin membrane. However the technique was efficient in enhancing the permeate flux solely with the bentonite suspension. In the other cases, the flux was the same as in conventional cross-flow operation. Such a failure cannot be exclusively attributed to chemical interactions with the membrane since the permeate flux increased linearly with cross-flow velocity for all suspensions in conventional operation. Much research is then required to establish the technique applicability.


2014 ◽  
Vol 625 ◽  
pp. 639-643
Author(s):  
Ma Umaira Suhaddha Zainal Abidin ◽  
Hilmi Mukhtar ◽  
Maizatul Shima Shaharun

Natural gas is one of the energy sources in the world. It consists of predominantly methane (CH4), ethane (C2H6), ethylene (C2H4), propane (C3H8) butane (C4H10), pentane (C5H12) and some impurities particularly hydrogen sulfide (H2S) and carbon dioxide (CO2) that need to be treated prior utilized. Amine solution such as diisopropanolamine (DIPA) is used to remove the CO2 and H2S in natural gas processing. However a small amount of amines losses in some unit operations causing amines discharged into the effluent wastewater. The objective of this study are to investigate the flux of water and permeate, and rejection of DIPA solution across reverse osmosis, nanofiltration and ultrafiltration membrane which known as AFC99, AFC40 and CA202 respectively. This paper studies the effect of cross-flow velocity on permeate flux and the effect of feed concentration on observed rejection of DIPA solution across AFC99, AFC40 and CA202 over the operating pressure. The results showed a significant role of cross-flow velocity on membrane performance from aspect flux obtained and phenomenon of concentration polarization that would increase the transport resistance of permeate flow. The highest flux can be achieved by high cross-flow velocity. While for rejection study, rejection of all membranes increase with increase of pressure yet decrease with concentration.


Author(s):  
Laslo Šereš ◽  
Ljubica Dokić ◽  
Bojana Ikonić ◽  
Dragana Šoronja-Simović ◽  
Miljana Djordjević ◽  
...  

Cross-flow microfiltration using ceramic tubular membrane was applied for treatment of steepwater from corn starch industry. Experiments are conducted according to the faced centered central composite design at three different transmembrane pressures (1, 2 and 3 bar) and cross-flow velocities (100, 150 and 200 L/h) with and without the usage of Kenics static mixer. For examination of the influence of the selected operating conditions at which usage of the static mixer is justified, a response surface methodology and desirability function approach were used. Obtained results showed improvement in the average permeate flux by using Kenics static mixer for 211 % to 269 % depending on experimental conditions when compared to the system without the static mixer. As a result of optimization, the best results considering flux improvement as well as reduction of specific energy consumption were obtained at low transmembrane pressure and lower feed cross-flow rates.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhammadameen Hajihama ◽  
Wirote Youravong

Tuna cooking juice is a co-product of tuna canning industry. It riches in protein, currently used for production of feed meal as well as protein hydrolysate. The finish products are usually in the form of concentrate, produced by evaporation process. However, evaporation is energy consumable process and the salt content level of the concentrate is often over the standard, thus required additional process for lowering salt content e.g. crystallization. The use of membrane technology, therefore, is of interest, since it required less energy and footprint compared with evaporation and is also able to reduce salt content of the concentrate. The aim of this study were to employ and select the membrane filtration process, and optimize the operating condition for protein concentration and desalination of tuna cooking juice. The results indicated that nanofiltration (NF) was more suitable than the ultrafiltration (UF) process, regarding the ability in protein recovery and desalination. The NF performance was evaluated in terms of permeation flux and protein and salt retentions. The protein and salt rejections of NF were 96 % and 5 %, respectively. The permeate flux(J) increased as transmembrane pressure (TMP) or cross flow rate (CFR) increased and the highest flux was obtained at TMP of 10 bar and CFR of 800 L/h. Operating with batch mode, the permeate flux was found to decrease as protein concentration increased, and at volume concentration factor about 4, the protein concentration  about 10% while salt removal was aproximately 70 % of the initial value. This work clearly showed that NF was successfully employed for concentration and desalination of protein derived from tuna cooking juice.


Sign in / Sign up

Export Citation Format

Share Document