scholarly journals Graphene Oxide-Based Membranes for Water Purification Applications: Effect of Plasma Treatment on the Adhesion and Stability of the Synthesized Membranes

Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 292 ◽  
Author(s):  
Omer Alnoor ◽  
Tahar Laoui ◽  
Ahmed Ibrahim ◽  
Feras Kafiah ◽  
Ghaith Nadhreen ◽  
...  

The adhesion enhancement of graphene oxide (GO) and reduced graphene oxide (rGO) layer in the underlying polyethersulfone (PES) microfiltration membrane is a crucial step towards developing a high-performance membrane for water purification applications. In the present study, we modified the surface of a PES microfiltration membrane with plasma treatment (PT) carried out at different times (2, 10, and 20 min). We studied the effect of PT on the adhesion, stability, and performance of the synthesized GO/rGO-PES membranes. The membranes’ surface morphology and chemistry were characterized using atomic force microscopy, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. The membrane performance was evaluated by conducting a diffusion test for potassium chloride (KCl) ions through the synthesized membranes. The results revealed that the 2 min PT enhanced the adhesion and stability of the deposited GO/rGO layer when compared to the other plasma-treated membranes. This was associated with an increase in the KCl ion rejection from ~27% to 57%. Surface morphology analysis at a high magnification was performed for the synthesized membranes before and after the diffusion test. Although the membrane’s rejection was improved, the analysis revealed that the GO layers suffered from micro/nano cracks, which negatively affected the membrane’s overall performance. The use of the rGO layer, however, helped in minimizing the GO cracks and enhanced the KCl ion rejection to approximately 94%. Upon increasing the number of rGO deposition cycles from three to five, the performance of the developed rGO-PES membrane was further improved, as confirmed by the increase in its ion rejection to ~99%.

Nanoscale ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 5696-5705 ◽  
Author(s):  
Xianfu Chen ◽  
Minghui Qiu ◽  
Hao Ding ◽  
Kaiyun Fu ◽  
Yiqun Fan

A high-performance graphene-based nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification.


Nano Letters ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 2928-2933 ◽  
Author(s):  
Weiwei L. Xu ◽  
Chao Fang ◽  
Fanglei Zhou ◽  
Zhuonan Song ◽  
Qiuli Liu ◽  
...  

1989 ◽  
Vol 170 ◽  
Author(s):  
Benjamin S. Hsiao ◽  
J. H. Eric

AbstractTranscrystallization of semicrystalline polymers, such as PEEK, PEKK and PPS, in high performance composites has been investigated. It is found that PPDT aramid fiber and pitch-based carbon fiber induce a transcrystalline interphase in all three polymers, whereas in PAN-based carbon fiber and glass fiber systems, transcrystallization occurs only under specific circumstances. Epitaxy is used to explain the surface-induced transcrystalline interphase in the first case. In the latter case, transcrystallization is probably not due to epitaxy, but may be attributed to the thermal conductivity mismatch. Plasma treatment on the fiber surface showed a negligible effect on inducing transcrystallization, implying that surface-free energy was not important. A microdebonding test was adopted to evaluate the interfacial strength between the fiber and matrix. Our preliminary results did not reveal any effect on the fiber/matrix interfacial strength of transcrystallinity.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 484
Author(s):  
Aprajita Tiwari Pandey ◽  
Ishan Pandey ◽  
Anurag Kanase ◽  
Amita Verma ◽  
Beatriz Garcia-Canibano ◽  
...  

Mushrooms produce a variety of bioactive compounds that are known to have anti-pathogenic properties with safer and effective therapeutic effects in human disease prognosis. The antibacterial activity of ethanol and methanol extracts of Pleurotus opuntiae were checked against pathogenic microorganisms viz. Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis NCIM 2300, Proteus vulgaris NCIM 5266, Serratia marcescens NCIM 2078, Shigella flexeneri NCIM 5265, Moraxella sp. NCIM 2795, Staphylococcus aureus ATCC 25923 by agar well diffusion method at different concentrations of the extracts. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extracts was determined by INT (Iodonitrotetrazolium chloride) colorimetric assay. Extracts were standardized by thin layer chromatography (TLC) in different solvent systems. The Retention factors (Rf) of different compounds were calculated by high performance TLC (HPTLC) fingerprinting at UV 254, 366, and 540 nm before and after derivatization. The ethanol and methanol extracts of P. opuntiae showed bactericidal activity against all the test pathogens at MIC values of 15.6 to 52.08 mg/mL and 20.81 to 52.08 mg/mL respectively. Whereas the MBC values for ethanol and methanol extract of P. opuntiae against all pathogens were recorded as 26.03 to 62.5 mg/mL and 125 mg/mL respectively. Preliminary mycochemical screening of both the extracts revealed high contents of bioactive compounds. Amongst all the solvent systems used in TLC, the best result was given by chloroform + hexane (8:2) which eluted out 5 different compounds (spots). HPTLC results revealed spots with different Rf values for all the 24 compounds present. Thus, it can be inferred from the present investigation that the mycoconstituents could be an alternative medication regimen and could play a role in new drug discoveries against different infections. Further, the antimicrobial components of these mushrooms can be transformed to bioengineered antimicrobial coatings for surfaces, drug and other hybrid systems for public health implications in combating persistent infections.


2021 ◽  
Vol 47 (2) ◽  
pp. 1-28
Author(s):  
Goran Flegar ◽  
Hartwig Anzt ◽  
Terry Cojean ◽  
Enrique S. Quintana-Ortí

The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific applications. In particular, the adoption of specialized hardware and data formats for low-precision arithmetic in high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the working precision in order to speed up the computations. For algorithms whose performance is bound by the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received considerable attention. One idea is to store an approximate operator–like a preconditioner–in lower than working precision hopefully without impacting the algorithm output. We realize the first high-performance implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready functionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the IEEE standard, but also customized formats which optimize the length of the exponent and significand to the characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that our implementation offers attractive runtime savings.


2013 ◽  
Vol 678 ◽  
pp. 56-60 ◽  
Author(s):  
Cherukutty Ramakrishnan Minitha ◽  
Ramasamy Thangavelu Rajendrakumar

Reduced graphene oxide is an excellent candidate for various electronic devices such as high performance gas sensors. In this work Graphene oxide was prepared by oxidizing graphite to form graphite oxide. From XRD analysis the peak around 11.5o confirmed that the oxygen was intercalated into graphite. By using hydrazine hydrate, the epoxy group in graphite oxide was reduced then the solution of reduced graphite oxide (rGO) is exfoliated. Raman spectrum of rGO contains both G band (1580 cm-1), D band (1350 cm-1). The remarkable structural changes reveals that reduction of graphene oxide from the values of ID/IG ratio that increase from 0.727 (GO) to 1.414 (rGO). The exfoliated reduced graphite oxide solution is spin coated on to the SiO2/Si substrates.


Sign in / Sign up

Export Citation Format

Share Document