scholarly journals Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 370
Author(s):  
Abiodun Abdulhameed Amusa ◽  
Abdul Latif Ahmad ◽  
Jimoh Kayode Adewole

In this paper, a review of the compatibility of polymeric membranes with lignocellulosic biomass is presented. The structure and composition of lignocellulosic biomass which could enhance membrane fabrications are considered. However, strong cell walls and interchain hindrances have limited the commercial-scale applications of raw lignocellulosic biomasses. These shortcomings can be surpassed to improve lignocellulosic biomass applications by using the proposed pretreatment methods, including physical and chemical methods, before incorporation into a single-polymer or copolymer matrix. It is imperative to understand the characteristics of lignocellulosic biomass and polymeric membranes, as well as to investigate membrane materials and how the separation performance of polymeric membranes containing lignocellulosic biomass can be influenced. Hence, lignocellulosic biomass and polymer modification and interfacial morphology improvement become necessary in producing mixed matrix membranes (MMMs). In general, the present study has shown that future membrane generations could attain high performance, e.g., CO2 separation using MMMs containing pretreated lignocellulosic biomasses with reachable hydroxyl group radicals.

2019 ◽  
Vol 7 (24) ◽  
pp. 14723-14731 ◽  
Author(s):  
Na Un Kim ◽  
Byeong Ju Park ◽  
Jae Hun Lee ◽  
Jong Hak Kim

High-performance membranes are prepared based on UiO-66-NH2 nanoparticles dispersed in an adhesive PGMA-co-POEM comb-like copolymer. The membranes show excellent separation performance (CO2 permeance of 1320 GPU and CO2/N2 selectivity of 30.8).


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 96
Author(s):  
Huali Tian ◽  
Xing Wu ◽  
Kaisong Zhang

Tight ultrafiltration (TUF) membranes with high performance have attracted more and more attention in the separation of organic molecules. To improve membrane performance, some methods such as interface polymerization have been applied. However, these approaches have complex operation procedures. In this study, a polydopamine (PDA) modified MoS2 (MoS2@PDA) blending polyethersulfone (PES) membrane with smaller pore size and excellent selectivity was fabricated by a simple phase inversion method. The molecular weight cut-off (MWCO) of as-prepared MoS2@PDA mixed matrix membranes (MMMs) changes, and the effective separation of dye molecules in MoS2@PDA MMMs with different concentrations were obtained. The addition amount of MoS2@PDA increased from 0 to 4.5 wt %, resulting in a series of membranes with the MWCO values of 7402.29, 7007.89, 5803.58, 5589.50, 6632.77, and 6664.55 Da. The MWCO of the membrane M3 (3.0 wt %) was the lowest, the pore size was defined as 2.62 nm, and the pure water flux was 42.0 L m−2 h−1 bar−1. The rejection of Chromotrope 2B (C2B), Reactive Blue 4 (RB4), and Janus Green B (JGB) in aqueous solution with different concentrations of dyes was better than that of unmodified membrane. The separation effect of M3 and M0 on JGB at different pH values was also investigated. The rejection rate of M3 to JGB was higher than M0 at different pH ranges from 3 to 11. The rejection of M3 was 98.17–99.88%. When pH was 11, the rejection of membranes decreased with the extension of separation time. Specifically, at 180 min, the rejection of M0 and M3 dropped to 77.59% and 88.61%, respectively. In addition, the membrane had a very low retention of salt ions, Nacl 1.58%, Na2SO4 10.52%, MgSO4 4.64%, and MgCl2 1.55%, reflecting the potential for separating salts and dyes of MoS2@PDA/PES MMMs.


2016 ◽  
Vol 4 (27) ◽  
pp. 10627-10634 ◽  
Author(s):  
Stefan J. D. Smith ◽  
Cher Hon Lau ◽  
James I. Mardel ◽  
Melanie Kitchin ◽  
Kristina Konstas ◽  
...  

Addressing the mechanical weakness and physical aging of glassy mixed matrix membranes to realise their potential for enhancing the separation performance of current membrane technologies.


REAKTOR ◽  
2008 ◽  
Vol 12 (2) ◽  
pp. 68 ◽  
Author(s):  
Tutuk Djoko Kusworo ◽  
Ahmad Fauzi Ismail ◽  
Azeman Mustafa ◽  
Kang Li

The permeation rates of O2, N2, CO2 and CH4 has been studied for polyimide-polyethersulfone (PI/PES) blends-zeolite mixed matrix membranes synthesized in our laboratory. The study investigated the effect of zeolite loading and different zeolite type on the gas separation performance of these mixed matrix membranes. Frequency shifts and absorption intensity changes in the FTIR spectra of the PI/PES blends as compared with those of the pure polymers indicate that there is a mixing of polymer blends at the molecular level. Differential scanning calorimetry measurements of pure and PI/PES blends membranes have showed one unique glass transition temperature that supports the miscible character of the PI/PES mixture. The PI/PES-zeolite 4A mixed matrix membrane with 25 wt % zeolite loading produced the highest O2/N2 and CO2/CH4 selectivity of around 7.45 and 46.05, respectively.


Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 75 ◽  
Author(s):  
S. A. S. C. Samarasinghe ◽  
Chong Yang Chuah ◽  
H. Enis Karahan ◽  
G. S. M. D. P. Sethunga ◽  
Tae-Hyun Bae

Membrane-based air separation (O2/N2) is of great importance owing to its energy efficiency as compared to conventional processes. Currently, dense polymeric membranes serve as the main pillar of industrial processes used for the generation of O2- and N2-enriched gas. However, conventional polymeric membranes often fail to meet the selectivity needs owing to the similarity in the effective diameters of O2 and N2 gases. Meanwhile, mixed-matrix membranes (MMMs) are convenient to produce high-performance membranes while keeping the advantages of polymeric materials. Here, we propose a novel MMM for O2/N2 separation, which is composed of Matrimid® 5218 (Matrimid) as the matrix, cobalt(II) phthalocyanine microparticles (CoPCMPs) as the filler, and Pluronic® F-127 (Pluronic) as the compatibilizer. By the incorporation of CoPCMPs to Matrimid, without Pluronic, interfacial defects were formed. Pluronic-treated CoPCMPs, on the other hand, enhanced O2 permeability and O2/N2 selectivity by 64% and 34%, respectively. We explain the enhancement achieved with the increase of both O2 diffusivity and O2/N2 solubility selectivity.


Sign in / Sign up

Export Citation Format

Share Document