scholarly journals Rapid Production and Purification of Dye-Loaded Liposomes by Electrodialysis-Driven Depletion

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 417
Author(s):  
Gamid Abatchev ◽  
Andrew Bogard ◽  
Zoe Hutchinson ◽  
Jason Ward ◽  
Daniel Fologea

Liposomes are spherical-shaped vesicles that enclose an aqueous milieu surrounded by bilayer or multilayer membranes formed by self-assembly of lipid molecules. They are intensively exploited as either model membranes for fundamental studies or as vehicles for delivery of active substances in vivo and in vitro. Irrespective of the method adopted for production of loaded liposomes, obtaining the final purified product is often achieved by employing multiple, time consuming steps. To alleviate this problem, we propose a simplified approach for concomitant production and purification of loaded liposomes by exploiting the Electrodialysis-Driven Depletion of charged molecules from solutions. Our investigations show that electrically-driven migration of charged detergent and dye molecules from solutions that include natural or synthetic lipid mixtures leads to rapid self-assembly of loaded, purified liposomes, as inferred from microscopy and fluorescence spectroscopy assessments. In addition, the same procedure was successfully applied for incorporating PEGylated lipids into the membranes for the purpose of enabling long-circulation times needed for potential in vivo applications. Dynamic Light Scattering analyses and comparison of electrically-formed liposomes with liposomes produced by sonication or extrusion suggest potential use for numerous in vitro and in vivo applications.

Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


2014 ◽  
Vol 59 (2) ◽  
pp. 1341-1343 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Annette W. Fothergill ◽  
Rosie Bocanegra ◽  
Marcos Olivo ◽  
...  

ABSTRACTWe evaluated thein vitroandin vivoactivities of the investigational arylamidine T-2307 against echinocandin-resistantCandida albicans. T-2307 demonstrated potentin vitroactivity, and daily subcutaneous doses between 0.75 and 6 mg/kg of body weight significantly improved survival and reduced fungal burden compared to placebo control and caspofungin (10 mg/kg/day) in mice with invasive candidiasis caused by an echinocandin-resistant strain. Thus, T-2307 may have potential use in the treatment of echinocandin-resistantC. albicansinfections.


Author(s):  
Thomas Quail ◽  
Stefan Golfier ◽  
Maria Elsner ◽  
Keisuke Ishihara ◽  
Vasanthanarayan Murugesan ◽  
...  

AbstractInteractions between liquids and surfaces generate forces1,2 that are crucial for many processes in biology, physics and engineering, including the motion of insects on the surface of water3, modulation of the material properties of spider silk4 and self-assembly of microstructures5. Recent studies have shown that cells assemble biomolecular condensates via phase separation6. In the nucleus, these condensates are thought to drive transcription7, heterochromatin formation8, nucleolus assembly9 and DNA repair10. Here we show that the interaction between liquid-like condensates and DNA generates forces that might play a role in bringing distant regulatory elements of DNA together, a key step in transcriptional regulation. We combine quantitative microscopy, in vitro reconstitution, optical tweezers and theory to show that the transcription factor FoxA1 mediates the condensation of a protein–DNA phase via a mesoscopic first-order phase transition. After nucleation, co-condensation forces drive growth of this phase by pulling non-condensed DNA. Altering the tension on the DNA strand enlarges or dissolves the condensates, revealing their mechanosensitive nature. These findings show that DNA condensation mediated by transcription factors could bring distant regions of DNA into close proximity, suggesting that this physical mechanism is a possible general regulatory principle for chromatin organization that may be relevant in vivo.


2016 ◽  
Vol 60 (9) ◽  
pp. 5111-5121 ◽  
Author(s):  
Emma Hennessy ◽  
Claire Adams ◽  
F. Jerry Reen ◽  
Fergal O'Gara

ABSTRACTStatins are members of a class of pharmaceutical widely used to reduce high levels of serum cholesterol. In addition, statins have so-called “pleiotropic effects,” which include inflammation reduction, immunomodulation, and antimicrobial effects. An increasing number of studies are emerging which detail the attenuation of bacterial growth andin vitroandin vivovirulence by statin treatment. In this review, we describe the current information available concerning the effects of statins on bacterial infections and provide insight regarding the potential use of these compounds as antimicrobial therapeutic agents.


2016 ◽  
Vol 60 (4) ◽  
pp. 2435-2442 ◽  
Author(s):  
Tecla Ciociola ◽  
Thelma A. Pertinhez ◽  
Laura Giovati ◽  
Martina Sperindè ◽  
Walter Magliani ◽  
...  

ABSTRACTSynthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro. The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo.


2016 ◽  
Author(s):  
Wesley G. Chen ◽  
Jacob Witten ◽  
Scott C. Grindy ◽  
Niels Holten-Andersen ◽  
Katharina Ribbeck

AbstractThe nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG-domains consist of repeating units of FxFG, FG, or GLFG sequences, which can be interspersed with highly charged amino acid sequences. Despite the high density of charge exhibited in certain FG-domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Studying how individual charged amino acids contribute to nuclear pore selectivity is challenging with modern in vivo and in vitro techniques due to the complexity of nucleoporin sequences. Here, we present a rationally designed approach to deconstruct essential components of nucleoporins down to 14 amino acid sequences. With these nucleoporin-based peptides, we systematically dissect how charge type and placement of charge influences self-assembly and selective binding of FG-containing gels. Specifically, we find that charge type determines which hydrophobic substrates FG sequences recognize while spatial localization of charge tunes hydrophobic self-assembly and receptor selectivity of FG sequences.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6217
Author(s):  
Tianchi Liu ◽  
Ruiqi Wang ◽  
Chenpeng Liu ◽  
Jiahong Lu ◽  
Yitao Wang ◽  
...  

Luohuazizhu suppository is a Traditional Chinese Medicine used in clinic to treat cervicitis, which is prepared from Callicarpa nudiflora Hook. et Arn (C. nudiflora), an herbal Chinese medicine named Luohuazizhu. This study aimed to figure out the active constituents of C. nudiflora and the potential mechanism for its anti-cervicitis effect. The ethanol extract in C. nudiflora (CNE) and the different fractions of CNE extracted by petroleum ether (CNE-p), dichloromethane (CNE-d), and n-butanol (CNE-b) were tested in vivo for their anti-cervicitis effects. Then the isolated compounds from the CNE-p were tested in vitro for their anti-inflammatory activities. The results displayed that CNE-p, CNE-d, and CNE-b exhibited adequate anti-cervicitis effects, with CNE-p showing the highest efficacy. Further experiment demonstrated that CNE-p could significantly inhibit the expression of NLRP3 in vitro. Six diterpenoids obtained from the CNE-p showed the ability to regulate inflammatory factor levels in vitro. Among these compounds, compounds 1 (callicarpic acid A) and 2 (syn-3,4-seco-12S-hydroxy-15,16-epoxy-4(18),8(17),3(16),14(15)-labdatetraen-3-oic acid) were the most effective agents, and they also inhibited the expression level of NLRP3 in vitro. The results confirmed that C. nudiflora has significant anti-cervicitis effects and the diterpenoids were most likely to be its active components. These data provide scientific support for the clinic usage of Luohuazizhu suppository and the development of new agents in treating cervicitis.


Sign in / Sign up

Export Citation Format

Share Document