scholarly journals Dissecting the Structure-Function Relationship of a Fungicidal Peptide Derived from the Constant Region of Human Immunoglobulins

2016 ◽  
Vol 60 (4) ◽  
pp. 2435-2442 ◽  
Author(s):  
Tecla Ciociola ◽  
Thelma A. Pertinhez ◽  
Laura Giovati ◽  
Martina Sperindè ◽  
Walter Magliani ◽  
...  

ABSTRACTSynthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro. The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo.

2013 ◽  
Vol 81 (10) ◽  
pp. 3855-3864 ◽  
Author(s):  
Amir I. Tukhvatulin ◽  
Ilya I. Gitlin ◽  
Dmitry V. Shcheblyakov ◽  
Natalia M. Artemicheva ◽  
Lyudmila G. Burdelya ◽  
...  

ABSTRACTPathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB. While coordination of responses initiated via different PRRs sensing multiple PAMPS present during an infection makes clear biological sense for the host, such interactions have not been fully characterized. Here, we demonstrate that combined stimulation of NOD1 and TLR5 (as well as other NOD and TLR family members) strongly potentiates activity of NF-κB and induces enhanced levels of innate immune reactions (e.g., cytokine production) bothin vitroandin vivo. Moreover, we show that an increased level of NF-κB activity plays a critical role in formation of downstream responses. In live mice, synergy between these receptors resulting in potentiation of NF-κB activity was organ specific, being most prominent in the gastrointestinal tract. Coordinated activity of NOD1 and TLR5 significantly increased protection of mice against enteroinvasiveSalmonellainfection. Obtained results suggest that cooperation of NOD and TLR receptors is important for effective responses to microbial infectionin vivo.


2018 ◽  
Vol 62 (12) ◽  
Author(s):  
K. M. T. Astvad ◽  
D. Sanglard ◽  
E. Delarze ◽  
R. K. Hare ◽  
M. C. Arendrup

ABSTRACTCandida tropicalisisolates often display reduced but persistent growth (trailing) over a broad fluconazole concentration range during EUCAST susceptibility testing. Whereas weak trailing (<25% of the positive growth control) is common and found not to impair fluconazole efficacy, we investigated if more pronounced trailing impacted treatment efficacy. Fluconazole efficacy against two weakly (≤25% growth), two moderately (26% to 50% growth), and one heavily (>70% growth) trailing resistant isolate and one resistant (100% growth) isolate were investigatedin vitroandin vivo(in aGalleria mellonellasurvival model and two nonlethal murine models).CDR1expression levels andERG11sequences were characterized. The survival in fluconazole-treatedG. mellonellawas inversely correlated with the degree of trailing (71% to 9% survival in treatment groups). In mice, resistant and heavily trailing isolates responded poorly to fluconazole treatment.CDR1expression was significantly higher in trailing and resistant isolates than in wild-type isolates (1.4-fold to 10-fold higher). All isolates exhibitedERG11wild-type alleles. Heavily trailing isolates were less responsive to fluconazole in allin vivomodels, indicating an impact on fluconazole efficacy.CDR1upregulation may have contributed to the observed differences. Moderately trailing isolates responded less well to fluconazole in larvae only. This confirms clinical data suggesting fluconazole is effective against infections with such isolates in less severely ill patients and supports the current 50% growth endpoint for susceptibility testing. However, it is still unclear if the gradual loss of efficacy observed for moderately trailing isolates in the larva model may be a reason for concern in selected vulnerable patient populations.


2016 ◽  
Vol 36 (8) ◽  
pp. 1287-1296 ◽  
Author(s):  
Xu Chen ◽  
Sheena D'Arcy ◽  
Catherine A. Radebaugh ◽  
Daniel D. Krzizike ◽  
Holli A. Giebler ◽  
...  

Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use theGALlocus inSaccharomyces cerevisiaeto investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When theGALlocus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measuredin vitro. When theGALlocus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed anin vivosystem to measure histone exchange at theGALlocus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability within vitronucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2Bin vivo.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


2014 ◽  
Vol 56 ◽  
pp. 167-180 ◽  
Author(s):  
Philipp Trepte ◽  
Nadine Strempel ◽  
Erich E. Wanker

PolyQ (polyglutamine) diseases such as HD (Huntington's disease) or SCA1 (spinocerebellar ataxia type 1) are neurodegenerative disorders caused by abnormally elongated polyQ tracts in human proteins. PolyQ expansions promote misfolding and aggregation of disease-causing proteins, leading to the appearance of nuclear and cytoplasmic inclusion bodies in patient neurons. Several lines of experimental evidence indicate that this process is critical for disease pathogenesis. However, the molecular mechanisms underlying spontaneous polyQ-containing aggregate formation and the perturbation of neuronal processes are still largely unclear. The present chapter reviews the current literature regarding misfolding and aggregation of polyQ-containing disease proteins. We specifically focus on studies that have investigated the amyloidogenesis of polyQ-containing HTTex1 (huntingtin exon 1) fragments. These protein fragments are disease-relevant and play a critical role in HD pathogenesis. We outline potential mechanisms behind mutant HTTex1 aggregation and toxicity, as well as proteins and small molecules that can modify HTTex1 amyloidogenesis in vitro and in vivo. The potential implications of such studies for the development of novel therapeutic strategies are discussed.


2019 ◽  
Vol 85 (9) ◽  
Author(s):  
Jongsoo Jeon ◽  
Dongeun Yong

ABSTRACT Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a life-threatening pathogen that causes serious global problems. Here, we investigated two novel P. aeruginosa bacteriophages (phages), Bϕ-R656 and Bϕ-R1836, in vitro, in silico, and in vivo to evaluate the potential of phage therapy to control XDR-PA clinical strains. Bϕ-R656 and Bϕ-R1836 belong to the Siphoviridae family and exhibited broad host ranges which could lyse 18 (64%) and 14 (50%) of the 28 XDR-PA strains. In addition, the two phages showed strong bacteriolytic activity against XDR-PA host strains from pneumonia patients. The whole genomes of Bϕ-R656 and Bϕ-R1836 have linear double-stranded DNA of 60,919 and 37,714 bp, respectively. The complete sequence of Bϕ-R656 had very low similarity to the previously discovered P. aeruginosa phages in GenBank, but phage Bϕ-R1836 exhibited 98% and 91% nucleotide similarity to Pseudomonas phages YMC12/01/R24 and PA1/KOR/2010, respectively. In the two in vivo infection models, treatment with Bϕ-R656 and Bϕ-R1836 enhanced the survival of Galleria mellonella larvae (50% and 60%, respectively) at 72 h postinfection and pneumonia-model mice (66% and 83%, respectively) at 12 days postinfection compared with untreated controls. Treatment with Bϕ-R656 or Bϕ-R1836 also significantly decreased the bacterial load in the lungs of the mouse pneumonia model (>6 log10 CFU and >4 log10 CFU, respectively) on day 5. IMPORTANCE In this study, two novel P. aeruginosa phages, Bϕ-R656 and Bϕ-R1836, were evaluated in vitro, in silico, and in vivo for therapeutic efficacy and safety as an alternative antibacterial agent to control XDR-PA strains collected from pneumonia patients. Both phages exhibited potent bacteriolytic activity and greatly improved survival in G. mellonella larva infection and a mouse acute pneumonia model. Based on these results, we strongly predict that these two new phages could be used as fast-acting and safe alternative biological weapons against XDR-PA infections.


2015 ◽  
Vol 83 (12) ◽  
pp. 4604-4616 ◽  
Author(s):  
Laís Sacramento ◽  
Silvia C. Trevelin ◽  
Manuela S. Nascimento ◽  
Djalma S. Lima-Jùnior ◽  
Diego L. Costa ◽  
...  

Leishmania infantumis a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by differentLeishmaniaspecies. We demonstrated that TLR9 is upregulatedin vitroandin vivoduring infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9−/−mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9−/−mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9−/−mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore,L. infantumfailed to activate both plasmacytoid and myeloid DCs from TLR9−/−mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected bothin vitroandin vivowhen DCs were derived from TLR9−/−mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response againstL. infantuminfection that could be associated with DC activation.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Liang Li ◽  
Genzhu Wang ◽  
Yi Li ◽  
Patrice Francois ◽  
Arnold S. Bayer ◽  
...  

ABSTRACT Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections are life-threatening syndromes with few therapeutic options. The potential impact of bacteriophages on the persistent outcome has not been well studied. In this study, we investigated the role of a novel prophage (ϕSA169) in MRSA persistence by using a lysogen-free clinically resolving bacteremia (RB) isolate and comparing it to a derivative which was obtained by infecting the RB strain with ϕSA169, which has been lysogenized in a clinical persistent MRSA bacteremia (PB) isolate. Similar to the PB isolate, the ϕSA169-lysogenized RB strain exhibited well-defined in vitro and in vivo phenotypic and genotypic signatures related to the persistent outcome, including earlier activation of global regulators (i.e., sigB, sarA, agr RNAIII, and sae); higher expression of a critical purine biosynthesis gene, purF; and higher growth rates accompanied by lower ATP levels and vancomycin (VAN) susceptibility and stronger δ-hemolysin and biofilm formation versus its isogenic parental RB isolate. Notably, the contribution of ϕSA169 in persistent outcome with VAN treatment was confirmed in an experimental infective endocarditis model. Taken together, these results indicate the critical role of the prophage ϕSA169 in persistent MRSA endovascular infections. Further studies are needed to identify the mechanisms of ϕSA169 in mediating the persistence, as well as establishing the scope of impact, of this prophage in other PB strains. IMPORTANCE Bacteriophages are viruses that invade the bacterial host, disrupt bacterial metabolism, and cause the bacterium to lyse. Because of its remarkable antibacterial activity and unique advantages over antibiotics, for instance, bacteriophage is specific for one species of bacteria and resistance to phage is less common than resistance to antibiotics. Indeed, bacteriophage therapy for treating infections due to multidrug-resistant pathogens in humans has become a research hot spot. However, it is also worth considering that bacteriophages are transferable and could cotransfer host chromosomal genes, e.g., virulence and antimicrobial resistance genes, while lysogenizing and integrating into the bacterial chromosome (prophage), thus playing a role in bacterial evolution and virulence. In the current study, we identified a novel prophage, ϕSA169, from a clinical persistent MRSA bacteremia isolate, and we determined that ϕSA169 mediated well-defined in vitro and in vivo phenotypic and genotypic signatures related to the persistent outcome, which may represent a unique and important persistent mechanism(s).


2015 ◽  
Vol 197 (19) ◽  
pp. 3216-3227 ◽  
Author(s):  
Sao-Mai Nguyen-Mau ◽  
So-Young Oh ◽  
Daphne I. Schneewind ◽  
Dominique Missiakas ◽  
Olaf Schneewind

ABSTRACTBacillus anthracisvegetative forms assemble an S-layer comprised of two S-layer proteins, Sap and EA1. A hallmark of S-layer proteins are their C-terminal crystallization domains, which assemble into a crystalline lattice once these polypeptides are deposited on the bacterial surface via association between their N-terminal S-layer homology domains and the secondary cell wall polysaccharide. Here we show thatslaQ, encoding a small cytoplasmic protein conserved among pathogenic bacilli elaborating S-layers, is required for the efficient secretion and assembly of Sap and EA1. S-layer protein precursors cosediment with SlaQ, and SlaQ appears to facilitate Sap assembly. Purified SlaQ polymerizes and when mixed with purified Sap promotes thein vitroformation of tubular S-layer structures. A model is discussed whereby SlaQ, in conjunction with S-layer secretion factors SecA2 and SlaP, promotes localized secretion and S-layer assembly inB. anthracis.IMPORTANCES-layer proteins are endowed with the propensity for self-assembly into crystalline arrays. Factors promoting S-layer protein assembly have heretofore not been reported. We identifiedBacillus anthracisSlaQ, a small cytoplasmic protein that facilitates S-layer protein assemblyin vivoandin vitro.


2016 ◽  
Vol 82 (24) ◽  
pp. 7041-7051 ◽  
Author(s):  
Chelsey M. VanDrisse ◽  
Kristy L. Hentchel ◽  
Jorge C. Escalante-Semerena

ABSTRACTAcetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals.Streptomycesspecies utilize aGcn5N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin,phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA fromSalmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases.S. entericawas used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO.In vitroandin vivoanalyses identified substrates acetylated by putative PPT acetyltransferases fromDeinococcus radiodurans(DR_1057 and DR_1182) andGeobacillus kaustophilus(GK0593 and GK2920).In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results ofin vitrostudies were consistent with thein vivoresults. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases inBurkholderia xenovorans,Bacillus subtilis,Staphylococcus aureus,Acinetobacter baylyi, andEscherichia coli.IMPORTANCEThe work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role ofGcn5N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination ofin vivo,in vitro, and bioinformatics approaches reported here identified GNATs that can acetylate and detoxify phosphinothricin.


Sign in / Sign up

Export Citation Format

Share Document