scholarly journals Cellulose Acetate Membranes Modification by Aminosilane Grafting in Supercritical Carbon Dioxide towards Antibiofilm Properties

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Marcin Tyrka ◽  
Mariusz Nowak ◽  
Dusan Misic ◽  
Tomasz Półbrat ◽  
Stanisław Koter ◽  
...  

The study explores the grafting of cellulose acetate microfiltration membranes with an aminosilane to attain antibiofilm properties. The grafting reaction was performed in the supercritical carbon dioxide used as a transport and reaction medium. The FTIR analyses and dissolution tests confirmed the covalent bonding between the aminosilane and polymer. The membranes’ microstructure was investigated using a dual-beam SEM and ion microscopy, and no adverse effects of the processing were found. The modified membranes showed a more hydrophilic nature and larger water permeate flow rate than the neat cellulose acetate membranes. The tests in a cross-filtration unit showed that modified membranes were considerably less blocked after a week of exposure to Staphylococcus aureus and Escherichia coli than the original ones. Microbiological investigations revealed strong antibiofilm properties of the grafted membranes in experiments with Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella Enteritidis.

2021 ◽  
Vol 2101 (1) ◽  
pp. 012063
Author(s):  
Wei Liu ◽  
Yanzhong Zhang ◽  
Huaiyun Chang ◽  
Rong Cai ◽  
Peiliang Ma

Abstract The ongoing search for environmentally friendlier alternative to the organic solvents used in chemical processes has led to the development of technologies based on supercritical carbon dioxide (scCO2), which is non-flammable, non-toxic and relatively inert fluid. Polymer chemistry does not escape this trend. Fluoropolymers prepared in scCO2 have many special properties, which are different from fluoropolymers that use water as the reaction medium, this paper studies the effect of polymerization temperature on polyvinyl fluoride polymerization in supercritical carbon dioxide. The results show that as the polymerization temperature increases, the intrinsic viscosity and shear viscosity of the polymer gradually decreases; at the same time, the increasing of polymerization temperature leads to higher proportion of irregular structure of the polymer, which causes lower melting point and lower crystallinity, and the film prepared by the resin also exhibits a higher visible light transmittance. The above results show that the resin polymerized in supercritical carbon dioxide can impart better performance to conventional polymerization, which expands the potential application fields of the resin.


Sign in / Sign up

Export Citation Format

Share Document