scholarly journals Molten Steel Flow, Heat Transfer and Inclusion Distribution in a Single-Strand Continuous Casting Tundish with Induction Heating

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1536
Author(s):  
Weixue Dou ◽  
Zexi Yang ◽  
Ziming Wang ◽  
Qiang Yue

The electrical magnetic field plays an important role in controlling the molten steel flow, heat transfer and migration of inclusions. However, industrial tests for inclusion distribution in a single-strand tundish under the electromagnetic field have never been reported before. The distribution of non-metallic inclusions in steel is still uncertain in an induction-heating (IH) tundish. In the present study, therefore, using numerical simulation methods, we simulate the flow and heat transfer characteristics of molten steel in the channel-type IH tundish, especially in the channel. At the same time, industrial trials were carried out on the channel-type IH tundish, and the temperature distribution of the tundish with or without IH under different pouring ladle furnace was analyzed. The method of scanning electron microscopy was employed to obtain the distribution of inclusions on different channel sections. The flow characteristics of molten steel in the channel change with flow time, and the single vortex and double vortex alternately occur under the electromagnetic field. The heat loss of molten steel can be compensated in a tundish with IH. As heating for 145 s, the temperature of the molten steel in the channel increases by 31.8 K. It demonstrates that the temperature of the molten steel in the tundish can be kept at the target value of around 1813 K, fluctuating up and down 3 K after using electromagnetic IH. In the IH channel, the large inclusions with diameters greater than 9 μm are more concentrated at the edge of the channel, and the effect of IH on the inclusion with diameters less than 9 μm has little effect.

2018 ◽  
Vol 89 (10) ◽  
pp. 1800173 ◽  
Author(s):  
Bin Yang ◽  
Hong Lei ◽  
Qian Bi ◽  
Jimin Jiang ◽  
Hongwei Zhang ◽  
...  

Author(s):  
Jinlong Zhang ◽  
Pengfei Li

SNPTRD was planning to employ cold crucible induction heating technique to investigate the corium pool heat transfer, using the UO2 and ZrO2 mixture as the simulated corium pool. Compared with the actual situation, the primary problem of the cold crucible induction heating was the additional introduction of electromagnetic field. To investigate the cold crucible applicability in simulating the corium pool heat transfer, the distribution of joule heat inside cold crucible and the magnitude of electromagnetic force were carried out. To be more suitable for heat transfer test research, the shape of cold crucible was changed to hemisphere, and the cooling water channels were set horizontally. The simulation results indicated that joule heat distribution would be more uniform with lower frequency power but considering power efficiency, there was only one best frequency. The magnitude of electromagnetic force can be ignored compared to the gravity on the natural convection research.


2006 ◽  
Vol 15-17 ◽  
pp. 18-23 ◽  
Author(s):  
Hai Tao Zhang ◽  
Hiromi Nagaum ◽  
Yu Bo Zuo ◽  
Jian Zhong Cui

A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.


2019 ◽  
Vol 54 (6) ◽  
pp. 745-752
Author(s):  
Jerome T Tzeng ◽  
Kou-Ta Hsieh

When carbon composites are exposed to a transient electromagnetic field, a rapid temperature increase can be observed due to joule heating from magnetic induction. The electromagnetic induction heating and heat transfer in the composite are anisotropic and concentrated upon the carbon fiber orientation and distribution. In addition, the strength and frequency of transient electromagnetic fields have great influence on the final quality of the composite. A computational model has been developed by solving coupled Maxwell’s and heat transfer equations. The analysis accounts for the three-dimensional transient electromagnetic field and electrical conductivity of the composite material. This paper will illustrate the derived formulation and numerical solution based on finite element methods. The developed code is validated with a 2D closed-form solution. Numerical simulations of a cylinder and a flat laminated plate are conducted to illustrate the computational capability. The induction heating for composite manufacture is also discussed for current Army’s applications.


Sign in / Sign up

Export Citation Format

Share Document