scholarly journals Creep Behavior of Compact γ′-γ″ Coprecipitation Strengthened IN718-Variant Superalloy

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1897
Author(s):  
Semanti Mukhopadhyay ◽  
Hariharan Sriram ◽  
Christopher H. Zenk ◽  
Richard DiDomizio ◽  
Andrew J. Detor ◽  
...  

The development of high-temperature heavy-duty turbine disk materials is critical for improving the overall efficiency of combined cycle power plants. An alloy development strategy to this end involves superalloys strengthened by ‘compact’ γ′-γ″ coprecipitates. Compact morphology of coprecipitates consists of a cuboidal γ′ precipitate such that γ″ discs coat its six {001} faces. The present work is an attempt to investigate the microstructure and creep behavior of a fully aged alloy exhibiting compact coprecipitates. We conducted heat treatments, detailed microstructural characterization, and creep testing at 1200 °F (649 °C) on an IN718-variant alloy. Our results indicate that aged IN718-27 samples exhibit a relatively uniform distribution of compact coprecipitates, irrespective of the cooling rate. However, the alloy ruptured at low strains during creep tests at 1200 °F (649 °C). At 100 ksi (689 MPa) load, the alloy fails around 0.1% strain, and 75 ksi (517 MPa) loading causes rupture at 0.3% strain. We also report extensive intergranular failure in all the tested samples, which is attributed to cracking along grain boundary precipitates. The results suggest that while the compact coprecipitates are indeed thermally stable during thermomechanical processing, the microstructure of the alloy needs to be optimized for better creep strength and rupture life.

Author(s):  
Haruhisa Shigeyama ◽  
Yukio Takahashi ◽  
Jonathan Parker

Creep strain equations of Grade 92 steel which is used in boilers and piping systems of ultra-supercritical (USC) thermal power plants were developed based on the results of creep tests on smooth round bar specimens of three kinds of Grade 92 steels. In these equations, primary creep behavior was represented by a power-law and tertiary creep behavior was described by an exponential function. Creep parameters were determined as a function of creep rupture times which were calculated from stress and absolute temperature. Additionally, generalized creep failure criteria considering the multiaxial stress were established on the basis of results of creep tests on circumferentially notched round bar specimens. These creep strain equations and creep failure criteria were incorporated into finite element analysis software. Then, creep failure analyses were carried out and the resulting deformation behavior and rupture times were compared with the experimental results. Creep rupture lives were predicted with a good accuracy, within a factor of two in most cases.


Author(s):  
Akhil Khajuria ◽  
Modassir Akhtar ◽  
Raman Bedi

This paper induced a novel methodology for the characterization of creep behavior of weld heat-affected zone (HAZ) for boron-free P91 (PM) and boron modified P91B (B-PM) steels. Gleeble-3800 thermo-mechanical simulator replicated specimens, representing coarse-grain HAZ (CGHAZ), fine-grained HAZ (FGHAZ), and inter-critical HAZ (ICHAZ). Short-term impression creep tests were conducted at 625°C/270-410MPa on PM/B-PM and their simulated HAZs after being subjected to post-weld heat treatment (PWHT) of 760°C/3 h. Microstructural characterization and local strain analyses were accomplished by electron back-scattered diffraction. Simulated microstructures of P91B-FG/ICHAZ after PWHT exhibited lath martensitic structure and large prior-austenite grain size as regards P91-FG/ICHAZ, correspondingly. Average values of local microstructural strain from local average misorientation were relatively high in B-PM and P91B-ICHAZ than PM and P91-ICHAZ, respectively. Similar observations were found for P91-CG/FGHAZ with their counterparts. Stress dependent steady-state creep-rate (SSCR) followed power-law for all specimens except PM. The minimum and maximum ranges of SSCR for P91B specimens were observed to be in a narrower range than P91 specimens. The value of stress exponent for all specimens was evaluated, and corresponding mechanisms were discussed. The analyses of microstructures and corresponding impression creep behavior of P91/P91B samples suggested that modification of 100 ppm boron to P91 steel improved creep-rupture ductility that delayed type IV failure at outer HAZ of P91 steel weldments.


2013 ◽  
Author(s):  
Norma J. Kuehn ◽  
Kajal Mukherjee ◽  
Paul Phiambolis ◽  
Lora L. Pinkerton ◽  
Elsy Varghese ◽  
...  

Author(s):  
Francisco Maciel Monticeli ◽  
Ana Karoline dos Reis ◽  
Roberta Motta Neves ◽  
Luis Felipe de Paula Santos ◽  
Edson Cocchieri Botelho ◽  
...  

The thermoplastic and thermoset laminates reinforced with different fibers generate variations in the laminated composite mechanical behavior. This work aims to analyze thermoplastic and thermoset composites creep behavior with a reduced number of experiments, applying curve-fitting analytical models (Weibull and Findley) and statistical approach (ANOVA, F-test, and SRM) in order to describe creep behavior. Creep tests were carried out using a design of experiments to define parameter levels, aiming to reduce the number of the experiments, keeping reliability relevance. The temperature shows a stronger influence of creep deformation compared with the use of distinct materials. Thermoplastic matrices seem to be more sensitive to deformation, decreasing the reinforcement contribution. On the other hand, the creep resistance of the thermoset matrix conducts a significant contribution of strain behavior for the reinforcement used. The Findley model showed a temperature-dependent response. While, the Weibull-based model exhibits temperature and material-dependence, ensuring a greater sensitivity range of the parameters applied, an essential factor for a more realistic method description.


2015 ◽  
Vol 76 ◽  
pp. 449-461 ◽  
Author(s):  
Mehdi A. Ehyaei ◽  
Mojtaba Tahani ◽  
Pouria Ahmadi ◽  
Mohammad Esfandiari

2003 ◽  
Vol 23 (17) ◽  
pp. 2169-2182 ◽  
Author(s):  
Manuel Valdés ◽  
Ma Dolores Durán ◽  
Antonio Rovira

1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.


Author(s):  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Steffen Bergholz ◽  
Christian Philippek ◽  
Jevgenij Kobzarev

Components of conventional power plants are subject to potential damage mechanisms such as creep, fatigue and their combination. These mechanisms have to be considered in the mechanical design process. Against this general background — as an example — the paper focusses on the low cycle fatigue behavior of a main steam shut off valve. The first design check based on standard design rules and linear Finite Element Analysis (FEA) identifies fatigue sensitive locations and potentially high fatigue usage. This will often occur in the context of flexible operational modes of combined cycle power plants which are a characteristic of the current demands of energy supply. In such a case a margin analysis constitutes a logical second step. It may comprise the identification of a more realistic description of the real operational loads and load-time histories and a refinement of the (creep-) fatigue assessment methods. This constitutes the basis of an advanced component design and assessment. In this work, nonlinear FEA is applied based on a nonlinear kinematic constitutive material model, in order to simulate the thermo-mechanical behavior of the high-Cr steel component mentioned above. The required material parameters are identified based on data of the accessible reference literature and data from an own test series. The accompanying testing campaign was successfully concluded by a series of uniaxial thermo-mechanical fatigue (TMF) tests simulating the most critical load case of the component. This detailed and hybrid approach proved to be appropriate for ensuring the required lifetime period of the component.


2000 ◽  
Vol 124 (1) ◽  
pp. 89-95 ◽  
Author(s):  
G. Lozza ◽  
P. Chiesa

This paper discusses novel schemes of combined cycle, where natural gas is chemically treated to remove carbon, rather than being directly used as fuel. Carbon conversion to CO2 is achieved before gas turbine combustion. The first part of the paper discussed plant configurations based on natural gas partial oxidation to produce carbon monoxide, converted to carbon dioxide by shift reaction and therefore separated from the fuel gas. The second part will address methane reforming as a starting reaction to achieve the same goal. Plant configuration and performance differs from the previous case because reforming is endothermic and requires high temperature heat and low operating pressure to obtain an elevated carbon conversion. The performance estimation shows that the reformer configuration has a lower efficiency and power output than the systems addressed in Part I. To improve the results, a reheat gas turbine can be used, with different characteristics from commercial machines. The thermodynamic efficiency of the systems of the two papers is compared by an exergetic analysis. The economic performance of natural gas fired power plants including CO2 sequestration is therefore addressed, finding a superiority of the partial oxidation system with chemical absorption. The additional cost of the kWh, due to the ability of CO2 capturing, can be estimated at about 13–14 mill$/kWh.


Sign in / Sign up

Export Citation Format

Share Document