scholarly journals Heterogeneous Microstructure-Induced Creep Failure Responses in Various Sub-Zones of Modified 310S Welded Joints

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 116
Author(s):  
Yunlu Jiang ◽  
Ying Kan ◽  
Huaining Chen

In order to reveal the creep failure behavior of novel modified 310S austenite steel welded joints, the creep life and microstructure evolution of the 310S austenite steel welded joints were investigated in this study. The rupture life was assessed to estimate the damage of the welded joint based on creep rupture tests performed at 600 °C in the stress range of 170–238 MPa. Compared with WM, HAZ facilitated the occurrence of creep failure in long term creep due to the combination of a smaller hardness value, a more heterogenous microstructure accompanied by coarsened M23C6, a larger grain size, higher KAM and Schmid factor. Discontinuous Laves phases appeared near the boundaries between the δ-ferrite and γ-austenite grains in the WM, and dislocation strengthening and precipitation strengthening were observed near the boundary in the BM. Furthermore, segregation elements were detected by APT and EDS adjacent to the boundary. Cr and C segregation near grain boundaries weaken the creep resistance in long term creep service.

Author(s):  
Kyungmok Kim

In this article, a creep–rupture model of aluminum alloys is developed using a time-dependent cohesive zone law. For long-term creep rupture, a time jump strategy is used in a cohesive zone law. Stress–rupture scatter of aluminum alloy 4032-T6 is fitted with a power law form. Then, change in the slope of a stress-rupture line is identified on a log–log scale. Implicit finite element analysis is employed with a model containing a cohesive zone. Stress–rupture curves at various given temperatures are calculated and compared with experimental ones. Results show that a proposed method allows predicting creep–rupture life of aluminum alloys.


Author(s):  
Kazuo Yoshida ◽  
Hirotake Nakai ◽  
Minami Fukuda

In order to evaluate long-term creep strength and to review current allowable tensile stresses of creep strength enhanced ferritic steels, a committee was organized in Japan Power Engineering and Inspection Corporation. In 2004FY and 2005FY, creep test data of Gr. 122, Gr. 91, Gr. 92, Gr. 23 and KA-SUS410J2TB steels were collected and analyzed by means of region splitting procedure in the committee. Based on the analysis, the allowable tensile stresses were reviewed in accordance with METI regulatory base. And the master curves for creep rupture life evaluation of welds were set forth furthermore based on the data analysis.


Author(s):  
Takashi Wakai ◽  
Yuji Nagae ◽  
Takashi Onizawa ◽  
Satoshi Obara ◽  
Yang Xu ◽  
...  

This paper describes a proposal of provisional allowable stress for the welded joints made of modified 9Cr-1Mo steel (ASME Gr.91) applicable to the structural design of Japanese Sodium cooled Fast Reactor (JSFR). For the early commercialization of the SFRs, economic competitiveness is one of the most essential requirements. One of the most practical means to reduce the construction costs is to diminish the total amount of structural materials. To meet the requirements, modified 9Cr-1Mo steel has attractive characteristics as a main structural material of SFRs, because the steel has both excellent thermal properties and high temperature strength. Employing the steel to the main pipe material, remarkable compact plant design can be achieved. There is only one elbow in the hot leg pipe of the primary circuit. However, in such a compact piping, it is difficult to keep enough distance between welded joint and high stress portion. In the welded joints of creep strength enhanced ferritic steels including ASME Gr.91 (modified 9Cr-1Mo) steel, creep strength may obviously degrade especially in long-term region. This phenomenon is known as “Type-IV” damage. Though obvious strength degradation has not observed at 550°C yet for the welded joint made of modified 9Cr-1Mo steel, it is proper to suppose strength degradation must take place in very long-term creep. Therefore, taking strength degradation due to “Type-IV” damage into account, the allowable stress applicable to JSFR pipe design was proposed based on creep rupture test data acquired in temperature accelerated conditions. Available creep rupture test data of welded joints made of modified 9Cr-1Mo steel provided by Japanese steel vender were collected. The database was analyzed by region partition method. The creep rupture data were divided into two regions of short-term and long-term and those were individually evaluated by regression analyses with Larson Miller Parameter (LMP). Boundary condition between short-term and long-term was half of 0.2% proof stress of base metal at corresponding temperature. First order equation of logarithm stress was applied. For conservativeness, allowable stress was proposed provisionally considering design factor for each region. Present design of JSFR hot leg pipe of primary circuit was evaluated using the proposed allowable stress. As a result, it was successfully demonstrated that the compact pipe design was assured. For validation of the provisional allowable stress, a series of long-term creep tests were started. In future, the provisional allowable stress will be properly reexamined when longer creep rupture data are obtained. In addition, some techniques to improve the performance of welded joints were surveyed and introduced.


2008 ◽  
Vol 580-582 ◽  
pp. 383-388
Author(s):  
Emmanuel Bauné ◽  
E. Galand ◽  
B. Leduey ◽  
G. Liberati ◽  
G. Cumino ◽  
...  

Increased efficiency and emission reduction in modern power plants lead to the use of new advanced materials with enhanced creep strength, with the objective to increase the steam parameters of power plants. With over ten years on market and wide experience related to its use, ASTM Grade 92 is becoming one of the most required materials when high service temperatures are reached (max. 610°C). Its composition, with 9%Cr and 1.5%W, gives rise to martensitic microstructures which offer very high creep strength and long term stability. The improved weldability and creep-strength between 500 and 580°C of the low alloy ASTM Grade 23, as well as a cost advantage over higher Cr materials in this temperature range, make it one of the possible candidates to meet the stringent requirements of modern power plants. Air Liquide Welding (ALW) has optimized and distributes a complete product family for the welding of Grades 23 and 92. TenarisDalmine (TD) focused on the development of Grade 23 tubes and pipes and is working on the development of Grade 92. A deep characterization work of the microstructural evolution and long term creep performances of these high temperature resistant materials was thus undertaken by ALW and TD, in collaboration with the Centro Sviluppo Materiali (CSM). The joint characterization program consisted in the assessment of welded joints creep properties. Welded joints were produced using the gas tungsten (GTAW), shielded metal (SMAW) and submerged arc welding (SAW) processes. Mechanical and creep properties of weldments were measured both in the as welded and post weld heat treated conditions and proper WPS’s were designed in a manner such that industrial production needs were satisfied. Short term creep resistance of cross weld specimens was measured to be within the base material acceptance criteria. Long term base material and cross weld creep performance evaluation are now in progress.


Author(s):  
Masatsugu Yaguchi ◽  
Takuaki Matsumura ◽  
Katsuaki Hoshino

Creep rupture data of welded joints of ASME Grades 91, 92 and 122 type steels have been collected and long-term creep rupture strength of the materials has been evaluated. Similar study was conducted by the SHC Committee in 2004 and 2005, therefore, the evaluation of the creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained after the previous study, in addition to discussion of the effects of product form, welding procedure and test temperature etc. on the creep strength. Almost the same results were obtained on the welded joint of Grade 92 as the previous study, however, the master creep life equations for the welded joints of Grades 91 and 122 were lower than the previous results, especially in the case of Grade 122. Furthermore, the creep strength reduction factor obtained from 100,000 hours creep strength of welded joints and base metal was given as a function of temperature.


Author(s):  
Kouichi Maruyama ◽  
Kyosuke Yoshimi

Long term creep rupture life is usually evaluated from short term data by a time-temperature parameter (TTP) method. The apparent activation energy Q for rupture life of steels sometimes changes from a high value of short term creep to a low value of long term creep. However, the conventional TTP analyses ignore the decrease in Q, resulting in the overestimation of rupture life recognized recently in advanced high Cr ferritic steels. A multi region analysis of creep rupture data is applied to a creep data set of Gr.122 steel; in the analysis a creep rupture data is divided into several data sets so that Q value is unique in each divided data set. The multi region analysis provides the best fit to the data and the lowest value of 105 h creep rupture strength among the three ways of data analysis examined. The conventional single region analysis cannot correctly represent the data points and predicts the highest strength. A half of 0.2% proof stress could not be an appropriate boundary for dividing data to be used in the multi region analysis. In the 2001 Edition of ASME Code an F average concept has been proposed as a substitution for the safety factor of 2/3 for average rupture stress. The allowable stress of Gr.122 steel may decrease significantly when the F average concept and the multi region analysis are adopted.


1990 ◽  
Vol 30 (10) ◽  
pp. 817-822 ◽  
Author(s):  
Kouichi Maruyama ◽  
Hideaki Kushima ◽  
Takashi Watanabe
Keyword(s):  

2013 ◽  
Vol 560 ◽  
pp. 678-684 ◽  
Author(s):  
M.E. Abd El-Azim ◽  
O.H. Ibrahim ◽  
O.E. El-Desoky

Author(s):  
Masatsugu Yaguchi ◽  
Kaoru Nakamura ◽  
Sosuke Nakahashi

Creep rupture data of welded joints of ASME Grade 91 type steel have been collected from Japanese plants, milling companies and institutes, and the long-term creep rupture strength of the material has been evaluated. This evaluation of welded joints of Grade 91 steel is the third one in Japan as similar studies were conducted in 2004 and 2010. The re-evaluation of the creep rupture strength was conducted with emphasis on the long-term creep rupture data obtained since the previous study, with durations of the new data of up to about 60000h. The new long-term data exhibited lower creep strength than that obtained from the master creep life equation for welded joints of Grade 91 steel determined in 2010, then the master creep life equation was again reviewed on the basis of the new data using the same regression method as that used in 2010. Furthermore, the weld strength reduction factors obtained from 100000h creep strength of welded joints and the base metals are given as a function of temperature, where the master creep equations of the base metals are also redetermined in this study.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Masakazu Fujitsuka ◽  
Hideaki Kushima

Creep test of ASME Grade 23 steel has been conducted at 625 and 650°C in helium gas atmosphere. Long-term creep strength of the steel in helium gas was compared with that in air and the influence of oxidation on long-term creep strength was investigated. Creep rupture strength drop was observed in the long-term at 625 and 650°C in air, and the same creep rupture strength drop was observed also in helium gas at 625°C. On the other hand, although creep rupture strength drop was observed in the long-term at 650°C in helium gas, creep rupture life in the long-term in helium gas was slightly longer than that in air at 650°C. Creep rupture life in the long-term at 650°C in air is reduced by not only degradation due to microstructural change, but also marked oxidation, however, that at 625°C is considered to be shortened mainly by a degradation caused by microstructural change. Long-term creep strength of ASME Grade 23 steel at 600°C and above should be reevaluated in consideration of strength drop due to microstructural change.


Sign in / Sign up

Export Citation Format

Share Document