scholarly journals Tribological Behavior of Nano-Sized SiCp/7075 Composite Parts Formed by Semisolid Processing

Metals ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 148 ◽  
Author(s):  
Jufu Jiang ◽  
Guanfei Xiao ◽  
Ying Wang ◽  
Yingze Liu
Author(s):  
Renan Magnol ◽  
Marciano Macedo ◽  
Marcelo de Macêdo ◽  
Cherlio Scandian

2020 ◽  
Vol 2020 (9) ◽  
pp. 13-17
Author(s):  
Yuriy Ryzhov ◽  
Svetlana Abramova

There is carried out a number of experiments with the purpose of analyzing SOTS impact upon both finishing productivity, and physical-chemical state and tribological behavior of surfaces machined, and also a possibility for creation according to the results of the investigations carried out a relatively universal micro-emulsion SOTS based on existing in the Ukraine the line of oils, PAV, corrosion inhibitors, alloying additives etc. As SOTS samples there were used both well-known compouds, for example, Camix, Nope Right (USA), and carbamide having in its structure boron, boron-phosphorus-containing additive, water-solvable phosphate, tributyl phosphate (oil-solvable), concentrate SOTS tribol, having in its structure compounds of boron, nitrogen and phosphorous; ethylic ether of fatty acids; methyl ether of colza oil; Sarkozyl-O having in its structure easily-decomposable chlorine compounds. From the results obtained it is possible to draw a conclusion that during finishing in the environment of water-compatible SOTS an important role in the formation of the properties of the surface worked is played by hydrocarbon components and additives which contribute to the formation of the thinnest surface layers modified with carbon and oxygen.


2020 ◽  
Vol 62 (12) ◽  
pp. 1243-1250
Author(s):  
Fahri Vatansever ◽  
Alpay Tamer Erturk ◽  
Erol Feyzullahoglu

2019 ◽  
Vol 61 (6) ◽  
pp. 543-548
Author(s):  
Aslı Gunay Bulutsuz ◽  
Mehmet Emin Yurci ◽  
Kadir Ozaltin ◽  
Witold Chrominski ◽  
Malgorzata Lewandowska

2010 ◽  
Vol 1 (2) ◽  
pp. 123-128
Author(s):  
Mohammad A. Chowdhury ◽  
Dewan M. Nuruzzaman ◽  
Mohammad L. Rahaman

2010 ◽  
Vol 43 (12) ◽  
pp. 2327-2332 ◽  
Author(s):  
R. Chou ◽  
A. Hernández Battez ◽  
J.J. Cabello ◽  
J.L. Viesca ◽  
A. Osorio ◽  
...  

Lubricants ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 67
Author(s):  
Sven Wirsching ◽  
Max Marian ◽  
Marcel Bartz ◽  
Thomas Stahl ◽  
Sandro Wartzack

In the context of targeted improvements in energy efficiency, secondary rolling bearing contacts are gaining relevance. As such, the elastohydrodynamically lubricated (EHL) roller face/rib contact of tapered roller bearings significantly affects power losses. Consequently, this contribution aimed at numerical optimization of the pairing’s macro-geometric parameters. The latter were sampled by a statistical design of experiments (DoE) and the tribological behavior was predicted by means of EHL contact simulations. For each of the geometric pairings considered, a database was generated. Key target variables such as pressure, lubricant gap and friction were approximated by a meta-model of optimal prognosis (MOP) and optimization was carried out using an evolutionary algorithm (EA). It was shown that the tribological behavior was mainly determined by the basic geometric pairing and the radii while eccentricity was of subordinate role. Furthermore, there was a trade-off between high load carrying capacity and low frictional losses. Thereby, spherical or toroidal geometries on the roller end face featuring a large radius paired with a tapered rib geometry were found to be advantageous in terms of low friction. For larger lubricant film heights and load carrying capacity, spherical or toroidal roller on toroidal rib geometries with medium radii were favorable.


2020 ◽  
Author(s):  
Nickolai L. Savchenko ◽  
Yuri A. Mirovoy ◽  
Alexander G. Burlachenko ◽  
Sergei Yu. Tarasov

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Alexander Mironov ◽  
Iosif Gershman ◽  
Eugeniy Gershman ◽  
Pavel Podrabinnik ◽  
Ekaterina Kuznetsova ◽  
...  

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.


Sign in / Sign up

Export Citation Format

Share Document