scholarly journals Effect of Heating Process on Microstructure and Properties of 2205/Q235B Composite Interface

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1027 ◽  
Author(s):  
Fengqiang Xiao ◽  
Dongpo Wang ◽  
Zhiming Gao ◽  
Lanju Zhou

In this paper, the influence of heating process parameters on interface characteristics and mechanical properties of 2205/Q235B clad steel plate was systematically studied. The results showed that the interfacial gap of the 2205/Q235B composite blank was completely bonded by the mutual diffusion of elements under the action of temperature and metallurgical bonding is achieved. The shear strength of the air-cooled samples was only 114–132 MPa, which was far lower than that of water-quenched samples and rolling deformation samples and was unable to meet the requirements of engineering applications. With the increase in heating temperature and holding time, the diffusion distance of the Cr element gradually increased. After rolling deformation, the diffusion distance of the Cr element was significantly reduced to 4.1–10.2 μm. Rolling deformation of the specimen in the decarburization showed the lowest microhardness, and in combination with the microhardness of the interface is about 236–256 HV, which is between the hardness of Q235B and 2205. The 2205 stainless-steel shows the lowest corrosion rate and the best corrosion resistance when rolling at 1200 °C. It was found that the corrosion was the most significant in the side of Q235B near the bonding zone. The corrosion pit width increased gradually with increased heating temperature.

2011 ◽  
Vol 189-193 ◽  
pp. 1519-1526
Author(s):  
Yong Lin Ma ◽  
Miao Cai ◽  
Qiang Han ◽  
Wen Li He

The FEM simulation is used to study the intermediate frequency induced heating process. The temperature distributions and temperature differences are obtained by two kind frequencies of 500 and 1000Hz. It is found that, in this simulation condition, the length of uniform temperature region is about three times of the coil height. It is obvious that, no matter which frequency, the heating rate is very high. With the process of 1000Hz, in less than 20 seconds, the heating temperature can reach a reasonable temperature, and with a process of 500Hz, the temperature can reach a reasonable temperature in more than 40 seconds. It is recommended that the frequency between 500 to 1000Hz could be available for a practical use.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


1963 ◽  
Vol 13 (1) ◽  
pp. 37-42
Author(s):  
Takeo MOCHIZUKI ◽  
Hideaki KAWABE
Keyword(s):  

2017 ◽  
Vol 123 ◽  
pp. 80-88 ◽  
Author(s):  
Kai Kang ◽  
Yosuke Kawahito ◽  
Ming Gao ◽  
Xiaoyan Zeng

2011 ◽  
Vol 421 ◽  
pp. 250-253
Author(s):  
Hu Zhu ◽  
Xiao Guang Yang

To lay the foundation of the automation for line heating forming, a method for heating path generation and simulation for ship plate steel base on STL mode was proposed in this paper. The line heating path was generated by slicing the STL model of the steel plate using a series of planes, and the models of the heating equipment of ship plate steel were build, and the heating process of ship plate steel can be simulated by inputting the models of the heating equipment into the simulation system that was built by using VC++ and OpenGL. The case study shows that the method can primely solve the inconvenient of manual heating and the whole heating process can be observed by the simulation so that the heating process can be made a reasonable monitoring, and the heating path generation and simulation software are runs stably and reliably.


2018 ◽  
Vol 36 ◽  
pp. 293-300 ◽  
Author(s):  
Yunfei Meng ◽  
Kai Kang ◽  
Ming Gao ◽  
Xiaoyan Zeng
Keyword(s):  

2012 ◽  
Vol 544 ◽  
pp. 268-273
Author(s):  
Lei Yang ◽  
Liang Gao

Line heating is the main method for forming compound curved shells of hull. The accuracy of final deformation and the productivity depend on the experience of the workers. To predict the plate deformation, the explicit mathematical model for deformation and the main influencing factors by FEA and GEP is established in this paper. The main influencing factors in line heating process were analyzed firstly. Then, 16 group deformation results of steel plate under the five main influencing factors were obtained by FEA. At last, the explicit mathematical model for deformation and the main influencing factors was established.


2012 ◽  
Vol 28 (02) ◽  
pp. 73-81
Author(s):  
Xue-biao Zhang ◽  
Yu-long Yang ◽  
Yu-jun Liu

In shipyards, hull curved plate formation is an important stage with respect to productivity and accuracy control of curved plates. Because the power and its distribution of induction heat source are easier to control and reproduce, induction heating is expected to be applied in the line heating process. This paper studies the moveable induction heating process of steel plate and develops a numerical model of electromagneticthermal coupling analysis and the numerical results consistent with the experimental results. The numerical model is used to analyze the temperature changing rules and the influences on plate temperature field of heating speed of moveable induction heating of steel plate, and the following conclusions are drawn. First, the process of moveable induction heating of steel plate can be divided into three phases of initial state, quasi-steady state, and end state. The temperature difference between the top and bottom surfaces of the steel plate at the initial state is the biggest; it remains unchanged at the quasi-steady state and it is the smallest at the end state. Second, obvious end effect occurs when the edges of the steel plate are heated by the inductor, which causes a decrease in temperature difference between the top and bottom surfaces of the steel plate that is unfavorable for formation of pillow shape plates. Third, with the increase of heating speed, the temperature difference between the top and bottom surfaces of the steel plate increases gradually.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 810
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval is carried on after bacteria heat-lysis by an on-chip micro-heater. Two additional carbon resistive temperature sensors printed on the biochip sealing film monitor the heating process. RNA is hybridized with capture probes on the reaction chamber surface and identification is achieved by detection of fluorescence tags. The application of the mentioned techniques and materials facilitates the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the potential of fully thermoplastic devices as biosensors.


Sign in / Sign up

Export Citation Format

Share Document