scholarly journals Lipid Annotator: Towards Accurate Annotation in Non-Targeted Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) Lipidomics Using a Rapid and User-Friendly Software

Metabolites ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 101 ◽  
Author(s):  
Jeremy P. Koelmel ◽  
Xiangdong Li ◽  
Sarah M. Stow ◽  
Mark J. Sartain ◽  
Adithya Murali ◽  
...  

Lipidomics has great promise in various applications; however, a major bottleneck in lipidomics is the accurate and comprehensive annotation of high-resolution tandem mass spectral data. While the number of available lipidomics software has drastically increased over the past five years, the reduction of false positives and the realization of obtaining structurally accurate annotations remains a significant challenge. We introduce Lipid Annotator, which is a user-friendly software for lipidomic analysis of data collected by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). We validate annotation accuracy against lipid standards and other lipidomics software. Lipid Annotator was integrated into a workflow applying an iterative exclusion MS/MS acquisition strategy to National Institute of Standards and Technology (NIST) SRM 1950 Metabolites in Frozen Human Plasma using reverse phase LC-HRMS/MS. Lipid Annotator, LipidMatch, and MS-DIAL produced consensus annotations at the level of lipid class for 98% and 96% of features detected in positive and negative mode, respectively. Lipid Annotator provides percentages of fatty acyl constituent species and employs scoring algorithms based on probability theory, which is less subjective than the tolerance and weighted match scores commonly used by available software. Lipid Annotator enables analysis of large sample cohorts and improves data-processing throughput as compared to previous lipidomics software.

2008 ◽  
Vol 49 (5) ◽  
pp. 1113-1125 ◽  
Author(s):  
Christopher A. Haynes ◽  
Jeremy C. Allegood ◽  
Kacee Sims ◽  
Elaine W. Wang ◽  
M. Cameron Sullards ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 43
Author(s):  
Roya R. R. Sardari ◽  
Jens Prothmann ◽  
Olavur Gregersen ◽  
Charlotta Turner ◽  
Eva Nordberg Karlsson

Phlorotannins are bioactive polyphenols in brown macroalgae that make these algae interesting as healthy food. Specific phlorotannins are, however, seldom identified, and extracts from different species are often only analysed for total phenolic content (TPC). In this study, our focus was to identify phlorotannin molecules from Saccharina latissima and Ascophyllum nodosum (a species rich in these compounds) using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2). Water and ethanol (30 and 80% v/v) were used at solid:liquid ratios, extraction times and temperatures, proposed to result in high TPC in extracts from other species. The S. latissima extracts, however, did not allow phlorotannin detection by either UHPLC-UV/Vis or UHPLC-HRMS2, despite a TPC response by the Folin–Ciocalteu assay, pinpointing a problem with interference by non-phenolic compounds. Purification by solid phase extraction (SPE) led to purer, more concentrated fractions and identification of four phlorotannin species in A. nodosum and one in S. latissima by UHPLC-HRMS2, using extracts in ethanol 80% v/v at a solid:liquid ratio of 1:10 for 20 h at 25 °C with an added 10 h at 65 °C incubation of remaining solids. The phlorotannin with the formula C12H10O7 (corresponding to bifuhalol) is the first identified in S. latissima.


Sign in / Sign up

Export Citation Format

Share Document