scholarly journals Unravelling Plant Responses to Stress—The Importance of Targeted and Untargeted Metabolomics

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 558
Author(s):  
J. William Allwood ◽  
Alex Williams ◽  
Henriette Uthe ◽  
Nicole M. van Dam ◽  
Luis A. J. Mur ◽  
...  

Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant–insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant–insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.

2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristhian Camilo Chávez-Arias ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Augusto Ramírez-Godoy ◽  
Hermann Restrepo-Díaz

Maize (Zea mays L.) is one of the main cereals grown around the world. It is used for human and animal nutrition and also as biofuel. However, as a direct consequence of global climate change, increased abiotic and biotic stress events have been reported in different regions of the world, which have become a threat to world maize yields. Drought and heat are environmental stresses that influence the growth, development, and yield processes of maize crops. Plants have developed dynamic responses at the physiological, biochemical, and molecular levels that allow them to escape, avoid and/or tolerate unfavorable environmental conditions. Arthropod herbivory can generate resistance or tolerance responses in plants that are associated with inducible and constitutive defenses. Increases in the frequency and severity of abiotic stress events (drought and heat), as a consequence of climate change, can generate critical variations in plant-insect interactions. However, the behavior of herbivorous arthropods under drought scenarios is not well understood, and this kind of stress may have some positive and negative effects on arthropod populations. The simultaneous appearance of different environmental stresses and biotic factors results in very complex plant responses. In this review, recent information is provided on the physiological, biochemical, and molecular responses of plants to the combination of drought, heat stress, and the effect on some arthropod pests of interest in the maize crop.


Paleobiology ◽  
2015 ◽  
Vol 41 (1) ◽  
pp. 174-186 ◽  
Author(s):  
Tao Su ◽  
Jonathan M. Adams ◽  
Torsten Wappler ◽  
Yong-Jiang Huang ◽  
Frédéric M. B. Jacques ◽  
...  

AbstractPlant-insect interactions are vital for structuring terrestrial ecosystems. It is still unclear how climate change in geological time might have shaped plant-insect interactions leading to modern ecosystems. We investigated the effect of Quaternary climate change on plant-insect interactions by observing insect herbivory on leaves of an evergreen sclerophyllous oak lineage (QuercussectionHeterobalanus, HET) from a late Pliocene flora and eight living forests in southwestern China. Among the modern HET populations investigated, the damage diversity tends to be higher in warmer and wetter climates. Even though the climate of the fossil flora was warmer and wetter than modern sample sites, the damage diversity is lower in the fossil flora than in modern HET populations. Eleven out of 18 damage types in modern HET populations are observed in the fossil flora. All damage types in the fossil flora, except for one distinctive gall type, are found in modern HET populations. These results indicate that Quaternary climate change did not cause extensive extinction of insect herbivores in HET forests. The accumulation of a more diverse herbivore fauna over time supports the view of plant species as evolutionary “islands” for colonization and turnover of insect species.


2012 ◽  
Vol 160 (4) ◽  
pp. 1677-1685 ◽  
Author(s):  
Evan H. DeLucia ◽  
Paul D. Nabity ◽  
Jorge A. Zavala ◽  
May R. Berenbaum

2020 ◽  
Vol 4 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Luca Pegoraro ◽  
Oriane Hidalgo ◽  
Ilia J. Leitch ◽  
Jaume Pellicer ◽  
Sarah E. Barlow

Ecosystems are at increasing risk from the global pollination crisis. Gaining better knowledge about pollinators and their interactions with plants is an urgent need. However, conventional methods of manually recording pollinator activity in the field can be time- and cost-consuming in terms of labour. Field-deployable video recording systems have become more common in ecological studies as they enable the capture of plant-insect interactions in fine detail. Standard video recording can be effective, although there are issues with hardware reliability under field-conditions (e.g. weatherproofing), and reviewing raw video manually is a time-consuming task. Automated video monitoring systems based on motion detection partly overcome these issues by only recording when activity occurs hence reducing the time needed to review footage during post-processing. Another advantage of these systems is that the hardware has relatively low power requirements. A few systems have been tested in the field which permit the collection of large datasets. Compared with other systems, automated monitoring allows vast increases in sampling at broad spatiotemporal scales. Some tools such as post-recording computer vision software and data-import scripts exist, further reducing users’ time spent processing and analysing the data. Integrated computer vision and automated species recognition using machine learning models have great potential to further the study of pollinators in the field. Together, it is predicted that future advances in technology-based field monitoring methods will contribute significantly to understanding the causes underpinning pollinator declines and, hence, developing effective solutions for dealing with this global challenge.


2007 ◽  
Vol 97 (5) ◽  
pp. 523-532 ◽  
Author(s):  
C. Couldridge ◽  
H.J. Newbury ◽  
B. Ford-Lloyd ◽  
J. Bale ◽  
J. Pritchard

AbstractThe aim of this study was to determine whichArabidopsis thaliana(L.) genes had significantly altered expression following 2–36 h of infestation by the aphidMyzus persicae(Sulzer). Six biological replicates were performed for both control and treatment at each time point, allowing rigorous statistical analysis of any changes. Only two genes showed altered expression after 2 h (one up- and one down-regulated) while two were down-regulated and twenty three were up-regulated at 36 h. The transcript annotation allowed classification of the significantly altered genes into a number of classes, including those involved in cell wall modification, carbon metabolism and signalling. Additionally, a number of genes were implicated in oxidative stress and defence against other pathogens. Five genes could not currently be assigned any function. The changes in gene expression are discussed in relation to current models of plant-insect interactions.


Sign in / Sign up

Export Citation Format

Share Document