scholarly journals Non-Invasive Analysis of Human Liver Metabolism by Magnetic Resonance Spectroscopy

Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 751
Author(s):  
John G. Jones

The liver is a key node of whole-body nutrient and fuel metabolism and is also the principal site for detoxification of xenobiotic compounds. As such, hepatic metabolite concentrations and/or turnover rates inform on the status of both hepatic and systemic metabolic diseases as well as the disposition of medications. As a tool to better understand liver metabolism in these settings, in vivo magnetic resonance spectroscopy (MRS) offers a non-invasive means of monitoring hepatic metabolic activity in real time both by direct observation of concentrations and dynamics of specific metabolites as well as by observation of their enrichment by stable isotope tracers. This review summarizes the applications and advances in human liver metabolic studies by in vivo MRS over the past 35 years and discusses future directions and opportunities that will be opened by the development of ultra-high field MR systems and by hyperpolarized stable isotope tracers.

Author(s):  
John G. Jones

The liver is a key node of whole-body nutrient and fuel metabolism and is also the principal site for detoxification of xenobiotic compounds. As such, hepatic metabolite concentrations and/or turnover rates inform the status of both hepatic and systemic metabolic diseases as well as the disposition of medications. As a tool to better understand liver metabolism in these settings, in vivo magnetic resonance spectroscopy (MRS) offers a non-invasive means of monitoring hepatic metabolic activity in real time both by direct observation of concentrations and dynamics of specific metabolites as well as by observation of their enrichment by stable isotope tracers. This review summarizes the applications and advances in human liver metabolic studies by in vivo MRS over the past 35 years and discusses future directions and opportunities that will be opened by the development of ultra-high field MR systems and by hyperpolarized stable isotope tracers.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i2-i2
Author(s):  
Georgios Batsios ◽  
Celine Taglang ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
Joseph Costello ◽  
...  

Abstract Telomere shortening constitutes a natural barrier to uncontrolled proliferation and all tumors must find a mechanism of maintaining telomere length. Most human tumors, including high-grade primary glioblastomas (GBMs) and low-grade oligodendrogliomas (LGOGs) achieve telomere maintenance via reactivation of the expression of telomerase reverse transcriptase (TERT), which is silenced in normal somatic cells. TERT expression is, therefore, a driver of tumor proliferation and, due to this essential role, TERT is also a therapeutic target. However, non-invasive methods of imaging TERT are lacking. The goal of this study was to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers of TERT expression that will enable non-invasive visualization of tumor burden in LGOGs and GBMs. First, we silenced TERT expression by RNA interference in patient-derived LGOG (SF10417, BT88) and GBM (GS2) models. Our results linked TERT silencing to significant reductions in steady-state levels of NADH in all models. NADH is essential for the conversion of pyruvate to lactate, suggesting that measuring pyruvate flux to lactate could be useful for imaging TERT status. Recently, deuterium (2H)-MRS has emerged as a novel, clinically translatable method of monitoring metabolic fluxes in vivo. However, to date, studies have solely examined 2H-glucose and the use of [U-2H]pyruvate for non-invasive 2H-MRS has not been tested. Following intravenous injection of a bolus of [U-2H]pyruvate, lactate production was higher in mice bearing orthotopic LGOG (BT88 and SF10417) and GBM (GS2) tumor xenografts relative to tumor-free mice, suggesting that [U-2H]pyruvate has the potential to monitor TERT expression in vivo. In summary, our study, for the first time, shows the feasibility and utility of [U-2H]pyruvate for in vivo imaging. Importantly, since 2H-MRS can be implemented on clinical scanners, our results provide a novel, non-invasive method of integrating information regarding a fundamental cancer hallmark, i.e. TERT, into glioma patient management.


1999 ◽  
Vol 58 (4) ◽  
pp. 861-870 ◽  
Author(s):  
A. Heerschap ◽  
C. Houtman ◽  
H. J. A. in 't Zandt ◽  
A. J. van den Bergh ◽  
B. Wieringa

31P magnetic resonance spectroscopy (MRS) offers a unique non-invasive window on energy metabolism in skeletal muscle, with possibilities for longitudinal studies and of obtaining important bioenergetic data continuously and with sufficient time resolution during muscle exercise. The present paper provides an introductory overview of the current status of in vivo31P MRS of skeletal muscle, focusing on human applications, but with some illustrative examples from studies on transgenic mice. Topics which are described in the present paper are the information content of the 31P magnetic resonance spectrum of skeletal muscle, some practical issues in the performance of this MRS methodology, related muscle biochemistry and the validity of interpreting results in terms of biochemical processes, the possibility of investigating reaction kinetics in vivo and some indications for fibre-type heterogeneity as seen in spectra obtained during exercise.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3406
Author(s):  
Elisabeth Bumes ◽  
Fro-Philip Wirtz ◽  
Claudia Fellner ◽  
Jirka Grosse ◽  
Dirk Hellwig ◽  
...  

Isocitrate dehydrogenase (IDH)-1 mutation is an important prognostic factor and a potential therapeutic target in glioma. Immunohistological and molecular diagnosis of IDH mutation status is invasive. To avoid tumor biopsy, dedicated spectroscopic techniques have been proposed to detect D-2-hydroxyglutarate (2-HG), the main metabolite of IDH, directly in vivo. However, these methods are technically challenging and not broadly available. Therefore, we explored the use of machine learning for the non-invasive, inexpensive and fast diagnosis of IDH status in standard 1H-magnetic resonance spectroscopy (1H-MRS). To this end, 30 of 34 consecutive patients with known or suspected glioma WHO grade II-IV were subjected to metabolic positron emission tomography (PET) imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) for optimized voxel placement in 1H-MRS. Routine 1H-magnetic resonance (1H-MR) spectra of tumor and contralateral healthy brain regions were acquired on a 3 Tesla magnetic resonance (3T-MR) scanner, prior to surgical tumor resection and molecular analysis of IDH status. Since 2-HG spectral signals were too overlapped for reliable discrimination of IDH mutated (IDHmut) and IDH wild-type (IDHwt) glioma, we used a nested cross-validation approach, whereby we trained a linear support vector machine (SVM) on the complete spectral information of the 1H-MRS data to predict IDH status. Using this approach, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% (95% CI, 77.2–99.9%) and a specificity of 75.0% (95% CI, 42.9–94.5%), respectively. The area under the curve (AUC) amounted to 0.83. Subsequent ex vivo 1H-nuclear magnetic resonance (1H-NMR) measurements performed on metabolite extracts of resected tumor material (eight specimens) revealed myo-inositol (M-ins) and glycine (Gly) to be the major discriminators of IDH status. We conclude that our approach allows a reliable, non-invasive, fast and cost-effective prediction of IDH status in a standard clinical setting.


2002 ◽  
Vol 36 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Gin S. Malhi ◽  
Michael Valenzuela ◽  
Wei Wen ◽  
Perminder Sachdev

Objective: This paper briefly describes neuroimaging using magnetic resonance spectroscopy (MRS) and provides a systematic review of its application to psychiatric disorders. Method: A literature review ( Index Medicus/ Medline) was carried out, as well as a review of other relevant papers and data known to the authors. Results: Magnetic resonance spectroscopy is a complex and sophisticated neuroimaging technique that allows reliable and reproducible quantification of brain neurochemistry provided its limitations are respected. In some branches of medicine it is already used clinically, for instance, to diagnose tumours and in psychiatry its applications are gradually extending beyond research. Neurochemical changes have been found in a variety of brain regions in dementia, schizophrenia and affective disorders and promising discoveries have also been made in anxiety disorders. Conclusions: Magnetic resonance spectroscopy is a non-invasive investigative technique that has provided useful insights into the biochemical basis of many neuropsychiatric disorders. It allows direct measurement, in vivo, of medication levels within the brain and has made it possible to track the neurochemical changes that occur as a consequence of disease and ageing or in response to treatment. It is an extremely useful advance in neuroimaging technology and one that will undoubtedly have many clinical uses in the near future.


2010 ◽  
pp. P3-32-P3-32 ◽  
Author(s):  
G Naredo-Gonzalez ◽  
MA Jansen ◽  
GD Merrifield ◽  
OB Sutcliffe ◽  
MK Hansen ◽  
...  

2019 ◽  
Author(s):  
Lydia M Le Page ◽  
Caroline Guglielmetti ◽  
Chloé Najac ◽  
Brice Tiret ◽  
Myriam M Chaumeil

AbstractLipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessingin vivoneuroinflammation and its modulation following therapy remains challenging, and new non-invasive methods allowing for longitudinal monitoring would be greatly valuable. Hyperpolarized (HP)13C magnetic resonance spectroscopy (MRS) is a promising technique for assessingin vivometabolism. In addition to applications in oncology, the most commonly used probe of [1-13C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we wished to investigate LPS-induced neuroinflammatory changes using HP [1-13C] pyruvate and HP13C urea.2D chemical shift imaging following simultaneous intravenous injection of HP [1-13C] pyruvate and HP13C urea was performed at baseline (day 0), day 3 and day 7 post intracranial injection of LPS (n=6) or saline (n=5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages).A significant increase in HP [1-13C] lactate production was observed in the injected (ipsilateral) side at 3 and 7 days of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP13C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared to baseline. IF analyses showed a significant increase in CD68 and GFAP at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection.In conclusion, we can detect LPS-induced changes in the mouse brain using HP13C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP13C spectroscopy holds much potential for providing non-invasive information on neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document