scholarly journals The Effect of the Anisotropy of Single Crystal Silicon on the Frequency Split of Vibrating Ring Gyroscopes

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 126 ◽  
Author(s):  
Zhengcheng Qin ◽  
Yang Gao ◽  
Jia Jia ◽  
Xukai Ding ◽  
Libin Huang ◽  
...  

This paper analyzes the effect of the anisotropy of single crystal silicon on the frequency split of the vibrating ring gyroscope, operated in the n = 2 wineglass mode. Firstly, the elastic properties including elastic matrices and orthotropic elasticity values of (100) and (111) silicon wafers were calculated using the direction cosines of transformed coordinate systems. The (111) wafer was found to be in-plane isotropic. Then, the frequency splits of the n = 2 mode ring gyroscopes of two wafers were simulated using the calculated elastic properties. The simulation results show that the frequency split of the (100) ring gyroscope is far larger than that of the (111) ring gyroscope. Finally, experimental verifications were carried out on the micro-gyroscopes fabricated using deep dry silicon on glass technology. The experimental results are sufficiently in agreement with those of the simulation. Although the single crystal silicon is anisotropic, all the results show that compared with the (100) ring gyroscope, the frequency split of the ring gyroscope fabricated using the (111) wafer is less affected by the crystal direction, which demonstrates that the (111) wafer is more suitable for use in silicon ring gyroscopes as it is possible to get a lower frequency split.

2007 ◽  
Vol 334-335 ◽  
pp. 281-284 ◽  
Author(s):  
Chun Te Lin ◽  
Kuo Ning Chiang

This paper proposes a novel atomistic-continuum mechanics (ACM) based on the finite element method (FEM) to investigate the mechanical bulk behavior of atomic-level single crystal silicon under uniaxial tensile loading. The ACM could be reduced efficiently the computational time and maintained the simulation accuracy. A general form of Stillinger-Weber potential function was used for interaction between the silicon atoms in the ACM simulations. Simulation results shows that the Young’s modulus of single crystal silicon were 121.8, 153 and 174.6 GPa along the (100), (110) and (111) crystallographic plane, respectively. These results are in reasonable agreement with the experiment and simulation results reported in the literature.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document