scholarly journals Inductive Magnetic Nanoparticle Sensor Based on Microfluidic Chip Oil Detection Technology

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 183 ◽  
Author(s):  
Chenzhao Bai ◽  
Hongpeng Zhang ◽  
Lin Zeng ◽  
Xupeng Zhao ◽  
Laihao Ma

The wear debris in hydraulic oil or lubricating oil has a wealth of equipment operating information, which is an important basis for large mechanical equipment detection and fault diagnosis. Based on traditional inductive oil detection technology, magnetic nanoparticles are exploited in this paper. A new inductive oil detection sensor is designed based on the characteristics of magnetic nanoparticles. The sensor improves detection sensitivity based on distinguishing between ferromagnetic and non-ferromagnetic wear debris. Magnetic nanoparticles increase the internal magnetic field strength of the solenoid coil and the stability of the internal magnetic field of the solenoid coil. During the experiment, the optimal position of the sensor microchannel was first determined, then the effect of the magnetic nanoparticles on the sensor’s detection was confirmed, and finally the concentration ratio of the mixture was determined. The experimental results show that the inductive oil detection sensor made of magnetic nanoparticle material had a higher detection effect, and the signal-to-noise ratio (SNR) of 20–70 μm ferromagnetic particles was increased by 20%–25%. The detection signal-to-noise ratio (SNR) of 80–130 μm non-ferromagnetic particles was increased by 16%–20%. The application of magnetic nanoparticles is a new method in the field of oil detection, which is of great significance for fault diagnosis and the life prediction of hydraulic systems.

Nano LIFE ◽  
2010 ◽  
Vol 01 (01n02) ◽  
pp. 17-32 ◽  
Author(s):  
ANDREW J. GIUSTINI ◽  
ALICIA A. PETRYK ◽  
SHIRAZ M. CASSIM ◽  
JENNIFER A. TATE ◽  
IAN BAKER ◽  
...  

The activation of magnetic nanoparticles (mNPs) by an alternating magnetic field (AMF) is currently being explored as technique for targeted therapeutic heating of tumors. Various types of superparamagnetic and ferromagnetic particles, with different coatings and targeting agents, allow for tumor site and type specificity. Magnetic nanoparticle hyperthermia is also being studied as an adjuvant to conventional chemotherapy and radiation therapy. This review provides an introduction to some of the relevant biology and materials science involved in the technical development and current and future use of mNP hyperthermia as clinical cancer therapy.


Nanoscale ◽  
2015 ◽  
Vol 7 (39) ◽  
pp. 16470-16480 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Eunjoo Kim ◽  
Sang Won Jeong ◽  
Tae-Lin Ha ◽  
Sang-Im Park ◽  
...  

The cytotoxicity of magnetic nanoparticles-conjugated polymeric micelles encapsulated with an anticancer drug on cancer cells was enhanced by the synergistic effect of heat and the rapid release of the drug under an alternating magnetic field.


2018 ◽  
Vol 45 (7) ◽  
pp. 0704001
Author(s):  
唐如欲 Tang Ruyu ◽  
刘德安 Liu Dean ◽  
朱健强 Zhu Jianqiang

2020 ◽  
Vol 51 (11) ◽  
pp. 1433-1449
Author(s):  
G. Annino ◽  
H. Moons ◽  
M. Fittipaldi ◽  
S. Van Doorslaer ◽  
E. Goovaerts

AbstractThis study compares the performance of two coil configurations for W-band pulsed ENDOR using a setup with both a radiofrequency ‘hairpin’ coil internal to a microwave non-radiative resonator and Helmholtz-like coils external to the resonator. Evaluation of the different coil performances is achieved via the ENDOR study of two model systems. The efficiencies of the coil configurations are first investigated numerically, showing that a higher radiofrequency current-to-magnetic field conversion factor can be achieved with the intra-cavity coil, with a similar radiofrequency magnetic field uniformity. This result is then confirmed by the broadband ENDOR spectra acquired with the two coil arrangements. A gain in the signal-to-noise ratio enabled by the internal coil of about a factor 10 was observed. In some cases, the high conversion factor of the intra-cavity coil led to a saturation of the ENDOR transitions. The possibility to implement a similar intra-cavity radiofrequency coil configuration in higher field spectrometers is finally discussed.


2011 ◽  
Vol 10 (03) ◽  
pp. 515-520 ◽  
Author(s):  
SI-HUA XIA ◽  
JUN WANG ◽  
ZHANG-XIAN LU ◽  
FEIYAN ZHANG

We report magneto-optical properties in a kerosene colloidal suspension of oleic acid coated Fe3O4 nanoparticles (~14 nm). The magnetic colloids (fluids) show birefringence under a magnetic field. Systematical studies of the on–off switch times upon application of the on–off magnetic field with varied experimental parameters indicate that the switch response time depends strongly on the strength of the magnetic field and the concentration of the magnetic nanoparticles in the fluid. The data can be explained in terms of the formation of magnetic nanoparticle chains under a magnetic field. The important magneto-optical properties of the magnetic fluids allow us to design a tunable optical switch.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2022
Author(s):  
Chenzhao Bai ◽  
Hongpeng Zhang ◽  
Chengjie Wang ◽  
Lebile Ilerioluwa Joseph ◽  
Qiang Wang ◽  
...  

In order to improve the throughput and sensitivity of the inductive metal micro-abrasive particle detection sensor, this paper uses microfluidic detection technology to design a high-throughput abrasive particle detection sensor based on PDMS (Polydimethylsiloxane). Theoretical modeling analyzes the magnetization of metal abrasive particles in the coil’s time-harmonic magnetic field, and uses COMSOL simulation to calculate the best performance parameters of the sensor. Through the experiment of the control variable method, the corresponding signal value is obtained and the signal-to-noise ratio (SNR) is calculated. The SNR value and error value are calculated, and the SNR is corrected. The detection limit of the sensor is determined to be 10 μm iron particles and 60 μm copper particles. The optimal design parameters of the 3-D solenoid coil and the frequency characteristics of the sensor are obtained. Finally, through high-throughput experiments and analysis, it was found that there was a reasonable error between the actual throughput and the theoretical throughput. The design ideas suggested in this article can not only improve the sample throughput, but also ensure the detection accuracy. This provides a new idea for the development of an inductive on-line detection method of abrasive particle technology.


2012 ◽  
Vol 170-173 ◽  
pp. 3125-3129
Author(s):  
Wei Dong ◽  
Zi Wei Zhou ◽  
Zheng Gan Zhou

The signal to noise ration of air-coupled ultrasonic testing is very poor and there is long time pulse residue, so it need adopt appropriate signal processing method to enhancing the SNR of received signal. Factors, which affect the received signal in ultrasonic testing process, is analyzed, phase sensitivity detection technology is presented to process the received signal, and ultrasonic testing information can be acquired by the calculation of phase signal. The principle of super-heterodyne receiver and phase sensitivity detector is introduced; some problem which should be pay attention in ultrasonic testing process is explained. Based on the research result, air-coupled ultrasonic testing system with phase sensitivity detector is constituted. Experiment results of image testing on carbon fiber reinforced plastic plate indicated that, phase sensitivity detection technology can improved signal to noise ratio of system and testing effect in evidence.


2020 ◽  
Vol 53 (5-6) ◽  
pp. 767-777
Author(s):  
Xueping Ren ◽  
Jian Kang ◽  
Zhixing Li ◽  
Jianguo Wang

The early fault signal of rolling bearings is very weak, and when analyzed under strong background noise, the traditional signal processing method is not ideal. To extract fault characteristic information more clearly, the second-order UCPSR method is applied to the early fault diagnosis of rolling bearings. The continuous potential function itself is a continuous sinusoidal function. The particle transition is smooth and the output is better. Because of its three parameters, the potential structure is more comprehensive and has more abundant characteristics. When the periodic signal, noise and potential function are the best match, the system exhibits better denoise compared to that of other methods. This paper discusses the influence of potential parameters on the motion state of particles between potential wells in combination with the potential parameter variation diagrams discussed. Then, the formula of output signal-to-noise ratio is derived to further study the relationships among potential parameters, and then the ant colony algorithm is used to optimize potential parameters in order to obtain the optimal output signal-to-noise ratio. Finally, an early weak fault diagnosis method for bearings based on the underdamped continuous potential stochastic resonance model is proposed. Through simulation and experimental verification, the underdamped continuous potential stochastic resonance results are compared with those of the time-delayed feedback stochastic resonance method, which proves the validity of the underdamped continuous potential stochastic resonance method.


2016 ◽  
Vol 78 (4) ◽  
pp. 1458-1463 ◽  
Author(s):  
Peter Komlosi ◽  
Talissa A. Altes ◽  
Kun Qing ◽  
Karen E. Mooney ◽  
G. Wilson Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document