scholarly journals Full Ground Ultra-Wideband Wearable Textile Antenna for Breast Cancer and Wireless Body Area Network Applications

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 322
Author(s):  
Sarmad Nozad Mahmood ◽  
Asnor Juraiza Ishak ◽  
Tale Saeidi ◽  
Azura Che Soh ◽  
Ali Jalal ◽  
...  

Wireless body area network (WBAN) applications have broad utility in monitoring patient health and transmitting the data wirelessly. WBAN can greatly benefit from wearable antennas. Wearable antennas provide comfort and continuity of the monitoring of the patient. Therefore, they must be comfortable, flexible, and operate without excessive degradation near the body. Most wearable antennas use a truncated ground, which increases specific absorption rate (SAR) undesirably. A full ground ultra-wideband (UWB) antenna is proposed and utilized here to attain a broad bandwidth while keeping SAR in the acceptable range based on both 1 g and 10 g standards. It is designed on a denim substrate with a dielectric constant of 1.4 and thickness of 0.7 mm alongside the ShieldIt conductive textile. The antenna is fed using a ground coplanar waveguide (GCPW) through a substrate-integrated waveguide (SIW) transition. This transition creates a perfect match while reducing SAR. In addition, the proposed antenna has a bandwidth (BW) of 7–28 GHz, maximum directive gain of 10.5 dBi and maximum radiation efficiency of 96%, with small dimensions of 60 × 50 × 0.7 mm3. The good antenna’s performance while it is placed on the breast shows that it is a good candidate for both breast cancer imaging and WBAN.

2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Norfatin Akma Elias ◽  
Noor Asmawati Samsuri ◽  
Mohamad Kamal A Rahim ◽  
Chinthana Panagamuwa ◽  
Will Whittow

Over recent years, there has been an explosive growth of interest in the development of flexible wearable antennas due to rapid growth in Wireless Body Area Network (WBAN) applications. However, the antenna is subjected to deformation when being worn by users. Therefore, it is compulsory to analyze the absorption of electromagnetic (EM) radiation and the antenna performances as a function of the deformation conditions since the antenna is not in its normal flat conditions anymore. In this paper, two types of deformations; bending and crumpling are analyzed by means of CST Microwave Studio. The peak SAR10g demonstrates increment up to 65.7 % and 48.7 % under bending and crumpling deformation respectively. Moreover, the crumpling is more sensitive to the geometrical shape and composition of the exposed body area if compared to bending. Moreover, the detuning effects of the resonant frequency are more significant for crumpling cases.


2014 ◽  
Vol 6 (5) ◽  
pp. 537-541 ◽  
Author(s):  
Heejong Lee ◽  
Seok-Jae Lee ◽  
Won-Sang Yoon ◽  
Sang-Min Han

An FM-ultra-wideband (UWB) system with a wideband RF carrier (WRC) is proposed for wireless body area network applications. The proposed system can control the channel power by means of an adjustable carrier bandwidth (BW), while the conventional one with a CW carrier (CWC) makes use of peak power control. The implemented WRC system performances have been evaluated for the WRC generation and digital data transmission. In addition, transmission performances have been compared with that of a conventional CWC system by bit-error-rate (BER) tests. For random data of a 29−1 pattern at a data-rate of 64 kbps, in spite of the flexible carrier BW, the WRC system has presented excellent transmission capability compared with that of the CWC system.


Wireless Body Area Network (WBAN) is a collection of miniaturized sensing nodes and coordinator nodes. These sensing nodes are placed in, on and around the body for uninterrupted monitoring of physiological data for medical applications. The main application carrier of WBAN is the human body and due to human body movement and physiological changes, the WBAN traffic fluctuates greatly. This network traffic fluctuation requires good network adaptability. In addition to traffic fluctuations, energy consumption is another key problem with WBANs as sensing nodes are very small in size. This paper design a reliable protocol by extending the MAC protocol for reducing energy consumption, PAP algorithm to decide data transmission rate and JOAR algorithm to select the optimize path for the data transmission. The performance of the algorithm outperforms other state of art algorithms to shows its significance.


2021 ◽  
Vol 12 (1) ◽  
pp. 140-158
Author(s):  
Raghvendra Singh ◽  
Kanad Ray ◽  
Preecha Yupapin ◽  
Jalil Ali

Ambient computing enabled for body area networks have received much consideration over the past couple of years due to its applications in biomedical, healthcare monitoring, and military systems. Such systems are attracting users in other applications like gaming, fitness, sports, and other life style tools. The fast-moving lifestyle of people impelled them in a situation of less consideration of their health and sports, and it generated the need of healthcare monitoring and tracking devices. Advances in wireless technology and embedded technology have generated keen interest in antenna, mounted on or around the body to transmit or receive the vital data of human body to on-body or off-body systems. The proposed antenna is for the use in wireless body area network (WBAN), in UWB frequency range 3.1 GHz.-10.6 GHz. Enhanced bandwidth ultra wideband (EB-UWB) patch antenna consists of the dimensions 30 mm×27 mm×1.6 mm. The prototype is fabricated and tested in free space and on-body scenario.


Sign in / Sign up

Export Citation Format

Share Document