scholarly journals A Gravity-Triggered Liquid Metal Patch Antenna with Reconfigurable Frequency

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 701
Author(s):  
Peng Qin ◽  
Guan-Long Huang ◽  
Jia-Jun Liang ◽  
Qian-Yu Wang ◽  
Jun-Heng Fu ◽  
...  

In this paper, a gravity-triggered liquid metal microstrip patch antenna with reconfigurable frequency is proposed with experimental verification. In this work, the substrate of the antenna is quickly obtained through three-dimensional (3D) printing technology. Non-toxic EGaIn alloy is filled into the resin substrate as a radiation patch, and the NaOH solution is used to remove the oxide film of EGaIn. In this configuration, the liquid metal inside the antenna can be flexibly flowed and deformed with different rotation angles due to the gravity to realize different working states. To validate the conception, the reflection coefficients and radiation patterns of the prototyped antenna are then measured, from which it can be observed that the measured results closely follow the simulations. The antenna can obtain a wide operating bandwidth of 3.69–4.95 GHz, which coverage over a range of frequencies suitable for various channels of the 5th generation (5G) mobile networks. The principle of gravitational driving can be applied to the design of reconfigurable antennas for other types of liquid metals.

2021 ◽  
Vol 2114 (1) ◽  
pp. 012051
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhi ◽  
Ahmed A. Naser

Abstract Antenna studies on various wireless communication systems have been carried out by many academics. In this research, the omnidirectional microstrip patch antenna (MPA) is proposed, manufactured, and tested. The operating bandwidth of the antenna is quite suitable for the different applications. The proposed antenna fabricated on the flame retardant (FR-4) substrate with a volume of 75.85 × 57.23 × 1.59 mm3. Computer simulation technology (CST) studio used to design and simulate. Experimental results show that the return loss (RL), bandwidth (BW), voltage standing wave ratio (VSWR) and input impedance (Zin ) are -25.26 dB, 61 MHz, 1.12 and 54.46 Ω, respectively. The antenna operates at 2.42 GHz (from 2.39 to 2.45 GHz), which has good performance in the Wi-Fi, Bluetooth, and ZigBee communications.


Author(s):  
Sheikh Dobir Hossain ◽  
Annatoma Arif ◽  
Bhushan Lohani ◽  
Robert C. Roberts

Author(s):  
Funda Cirik ◽  
Bahadir Süleyman Yildirim

A high-gain microstrip patch-type WiMAX antenna operating at 3.5 GHz has been designed with a parasitic radiator and a raised ground plane. Antenna design has been carried out through extensive three-dimensional electromagnetic simulations. The patch antenna itself provides a realized gain of about 3.6 dB at 3.5 GHz. When a parasitic radiator is placed on top of the patch antenna, the gain increases from about 3.6 dB to about 7.4 dB. The raised ground plane further enhances the gain by about 1.5 dB. Hence the overall gain improvement is about 5.3 dB without the need of a radio-frequency amplifier.


2012 ◽  
Vol 60 (5) ◽  
pp. 2151-2156 ◽  
Author(s):  
G. J. Hayes ◽  
Ju-Hee So ◽  
A. Qusba ◽  
M. D. Dickey ◽  
G. Lazzi

2019 ◽  
Vol 872 ◽  
pp. 272-307 ◽  
Author(s):  
Simon E. Game ◽  
Marc Hodes ◽  
Demetrios T. Papageorgiou

The flow rate of a pressure-driven liquid through a microchannel may be enhanced by texturing its no-slip boundaries with grooves aligned with the flow. In such cases, the grooves may contain vapour and/or an inert gas and the liquid is trapped in the Cassie state, resulting in (apparent) slip. The flow-rate enhancement is of benefit to different applications including the increase of throughput of a liquid in a lab-on-a-chip, and the reduction of thermal resistance associated with liquid metal cooling of microelectronics. At any given cross-section, the meniscus takes the approximate shape of a circular arc whose curvature is determined by the pressure difference across it. Hence, it typically protrudes into the grooves near the inlet of a microchannel and is gradually drawn into the microchannel as it is traversed and the liquid pressure decreases. For sufficiently large Reynolds numbers, the variation of the meniscus shape and hence the flow geometry necessitates the inclusion of inertial (non-parallel) flow effects. We capture them for a slender microchannel, where our small parameter is the ratio of ridge pitch-to-microchannel height, and order-one Reynolds numbers. This is done by using a hybrid analytical–numerical method to resolve the nonlinear three-dimensional (3-D) problem as a sequence of two-dimensional (2-D) linear ones in the microchannel cross-section, allied with non-local conditions that determine the slowly varying pressure distribution at leading and first orders. When the pressure difference across the microchannel is constrained by the advancing contact angle of the liquid on the ridges and its surface tension (which is high for liquid metals), inertial effects can significantly reduce the flow rate for realistic parameter values. For example, when the solid fraction of the ridges is 0.1, the microchannel height-to-(half) ridge pitch ratio is 6, the Reynolds number of the flow is 1 and the small parameter is 0.1, they reduce the flow rate of a liquid metal (Galinstan) by approximately 50 %. Conversely, for sufficiently large microchannel heights, they enhance it. Physical explanations of both of these phenomena are given.


2020 ◽  
Vol 29 (4) ◽  
pp. 045032
Author(s):  
Anthony S Griffin ◽  
Hong Pan ◽  
Joel D Barrera ◽  
Gregory H Huff ◽  
Scott R White ◽  
...  

2019 ◽  
Vol 61 (10) ◽  
pp. 2306-2314
Author(s):  
Minjae Lee ◽  
Hyunwoo Son ◽  
Daecheon Lim ◽  
Sukwon Lee ◽  
Sungjoon Lim

Sign in / Sign up

Export Citation Format

Share Document