scholarly journals Physics-Based TCAD Simulation and Calibration of 600 V GaN/AlGaN/GaN Device Characteristics and Analysis of Interface Traps

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 751
Author(s):  
Yu-Lin Song ◽  
Manoj Kumar Reddy ◽  
Luh-Maan Chang ◽  
Gene Sheu

This study proposes an analysis of the physics-based TCAD (Technology Computer-Aided Design) simulation procedure for GaN/AlGaN/GaN HEMT (High Electron Mobility Transistor) device structures grown on Si (111) substrate which is calibrated against measurement data. The presence of traps and activation energies in the device structure will impact the performance of a device, the source of traps and position of traps in the device remains as a complex exercise until today. The key parameters for the precise tuning of threshold voltage (Vth) in GaN transistors are the control of the positive fixed charges −5 × 1012 cm−2, donor-like traps −3 × 1013 cm−2 at the nitride/GaN interfaces, the energy of the donor-like traps 1.42 eV below the conduction band and the acceptor traps activation energy in the AlGaN layer and buffer regions with 0.59 eV below the conduction band. Hence in this paper, the sensitivity of the trap mechanisms in GaN/AlGaN/GaN HEMT transistors, understanding the absolute vertical electric field distribution, electron density and the physical characteristics of the device has been investigated and the results are in good agreement with GaN experimental data.

Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 444 ◽  
Author(s):  
Shunwei Zhu ◽  
Hujun Jia ◽  
Tao Li ◽  
Yibo Tong ◽  
Yuan Liang ◽  
...  

A novel AlGaN/GaN high-electron-mobility transistor (HEMT) with a high gate and a multi-recessed buffer (HGMRB) for high-energy-efficiency applications is proposed, and the mechanism of the device is investigated using technology computer aided design (TCAD) Sentaurus and advanced design system (ADS) simulations. The gate of the new structure is 5 nm higher than the barrier layer, and the buffer layer has two recessed regions in the buffer layer. The TCAD simulation results show that the maximum drain saturation current and transconductance of the HGMRB HEMT decreases slightly, but the breakdown voltage increases by 16.7%, while the gate-to-source capacitance decreases by 17%. The new structure has a better gain than the conventional HEMT. In radio frequency (RF) simulation, the results show that the HGMRB HEMT has 90.8%, 89.3%, and 84.4% power-added efficiency (PAE) at 600 MHz, 1.2 GHz, and 2.4 GHz, respectively, which ensures a large output power density. Overall, the results show that the HGMRB HEMT is a better prospect for high energy efficiency than the conventional HEMT.


2017 ◽  
Vol 16 (2) ◽  
pp. 117
Author(s):  
Vladica Đorđević ◽  
Zlatica Marinković ◽  
Olivera Pronić-Rančić

The noise wave model has appeared as a very appropriate model for the purpose of transistor noise modeling at microwave frequencies. The transistor noise wave model parameters are usually extracted from the measured transistor noise parameters by using time-consuming optimization procedures in microwave circuit simulators. Therefore, three different Computer-Aided Design methods that enable more efficient automatic determination of these parameters in the case of high electron-mobility transistors were developed. All of these extraction methods are based on different noise de-embedding procedures, which are described in detail within this paper. In order to validate the presented extraction methods, they were applied for the noise modeling of a specific GaAs high electron-mobility transistor. Finally, the obtained results were used for the comparative analysis of the presented extraction approaches in terms of accuracy, complexity and effectiveness.


2018 ◽  
Vol 44 (3) ◽  
pp. 177-183
Author(s):  
Cimara Fortes Ferreira ◽  
Mohamed Shafter ◽  
Vinay Jain ◽  
Russel Anthony Wicks ◽  
Erno Linder ◽  
...  

Extruded cement during dental implant crown cementation may cause peri-implant diseases if not removed adequately. The purpose of this study was to evaluate the efficiency of removal of cement after cementation of implant crowns using an experimental circular crisscross flossing technique (CCFT) flossing technique, compared to the conventional “C”-shape flossing technique (CSFT). Twenty-four patients rendered 29 experimental and 29 control crowns. Prefabricated abutments were secured to the implant such that the margins were at least 1 mm subgingivally. The abutments were scanned using computer-aided design/computer-aided manufacturing technology and Emax crowns were fabricated in duplicates. Each crown was cemented individually and excess cement was removed using the CSFT and the CCFT techniques. After completion of cementation was completed, the screw access holes were accessed and the crown was unscrewed along with the abutment. The samples were disinfected using 70% ethanol for 10 minutes. Crowns were divided into 4 parts using a marker to facilitate measurement data collection. Vertical and horizontal measurements were made for extruded cement for each control and experimental groups by means of a digital microscope. One-hundred and seventeen measurements were made for each group. Mann–Whitney test was applied to verify statistical significance between the groups. The CCFT showed a highly statistically significant result (104.8 ± 13.66, P < .0001) for cement removal compared with the CSFT (291.8 ± 21.96, P < .0001). The vertical measurements of the extruded cement showed a median of 231.1 μm (IQR = 112.79–398.39) and 43.62 μm (IQR = 0–180.21) for the control and the experimental flossing techniques, respectively. The horizontal measurements of the extruded cement showed a median of 987.1 μm (IQR = 476.7–1,933.58) and 139.2 μm (IQR = 0–858.28) for the control and the experimental flossing techniques, respectively. The CCFT showed highly statistically significant less cement after implant crowns cementation when compared with the CSFT.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 353 ◽  
Author(s):  
Giovanni Crupi ◽  
Antonio Raffo ◽  
Valeria Vadalà ◽  
Giorgio Vannini ◽  
Alina Caddemi

The aim of this feature article is to provide a deep insight into the origin of the kink effects affecting the output reflection coefficient (S22) and the short-circuit current-gain (h21) of solid-state electronic devices. To gain a clear and comprehensive understanding of how these anomalous phenomena impact device performance, the kink effects in S22 and h21 are thoroughly analyzed over a broad range of bias and temperature conditions. The analysis is accomplished using high-frequency scattering (S-) parameters measured on a gallium-nitride (GaN) high electron-mobility transistor (HEMT). The experiments show that the kink effects might become more or less severe depending on the bias and temperature conditions. By using a GaN HEMT equivalent-circuit model, the experimental results are analyzed and interpreted in terms of the circuit elements to investigate the origin of the kink effects and their dependence on the operating condition. This empirical analysis provides valuable information, simply achievable by conventional instrumentation, that can be used not only by GaN foundries to optimize the technology processes and, as a consequence, device performance, but also by designers that need to face out with the pronounced kink effects of this amazing technology.


2020 ◽  
Vol 19 (06) ◽  
pp. 2050011
Author(s):  
Yogesh Kumar Verma ◽  
Varun Mishra ◽  
Santosh Kumar Gupta

The two-dimensional electron gas (2DEG) at the heterointerface of AlGaN and GaN is a complicated transcendental function of gate voltage, so an analytical charge control model for AlGaN/GaN high electron mobility transistor (HEMT) is presented accounting for all the three regions of operation (i.e., sub-threshold, moderate, and strong-inversion region). In addition to it, the performance of AlGaN/GaN HEMT is highly dependent on the device geometry. Therefore, to get the optimum performance of the device it is advisable to optimize the parameters governing the device geometry. Accordingly, the output and transfer characteristics, threshold voltage, ON current, OFF current, and transconductance are calculated using numerical computations. The present design is tested to calculate the voltage transfer characteristics (VTC) and transient characteristics of the invertor circuit, after the optimization of the device parameters.


2019 ◽  
Vol 11 (31) ◽  
pp. 3981-3986 ◽  
Author(s):  
Lei Zhao ◽  
Xinsheng Liu ◽  
Bin Miao ◽  
Zhiqi Gu ◽  
Jin Wang ◽  
...  

In this study, we propose a differential extended gate (DEG)-AlGaN/GaN high electron mobility transistor (HEMT) sensor to detect ionic pollutants in solution.


2012 ◽  
Vol 217-219 ◽  
pp. 2393-2396 ◽  
Author(s):  
Han Guo ◽  
Wu Tang ◽  
Wei Zhou ◽  
Chi Ming Li

The electrical properties of AlGaN/GaN heterojunction high electron mobility transistor (HEMT) are simulated by using sentaurus software. This paper compares two structures, the HEMT with GaN cap layer and the HEMT without GaN cap layer. The sentaurus software simulates the DC and AC characteristics of the two AlGaN/GaN HEMT structures. The HEMT with GaN cap layer can increase the maximum transconductance gm from 177ms/mm to 399ms/mm when the doping concentration of the cap layer is 3×1018cm-3 compared with the other structure under the same conditions. The simulation results indicate that the HEMT with cap layer can increase maximum transconductance gm, saturation current Ids, current-gain cutoff frequency fT, maximum oscillation frequency fmax and reduce the series resistance of the drain to source compared with the HEMT without GaN cap layer. The large Ids of the HEMT with cap layer is attributed to the increase of the concentration of two dimensional electron gas (2DEG). Moreover, the change of the doping concentration of the cap layer will affect the gm and Ids.


2010 ◽  
Vol 159 ◽  
pp. 342-347 ◽  
Author(s):  
T.R. Lenka ◽  
A.K. Panda

In this paper, there is an attempt to present the two dimensional electron gas (2DEG) transport characteristics of AlxGa1-xN/(AlN)/GaN-based High Electron Mobility Transistor (HEMT) using a self-consistent numerical method for calculating the conduction-band profile and subband structure. The subband calculations take into account the piezoelectric and spontaneous polarization effects and the Hartree and exchange-correlation interaction. Here the dependency of conduction band profile, subband energies, 2DEG sheet concentration and sheet resistance on various Al mole fractions of AlxGa1-xN barrier layer are presented by incorporating simulation as well as available experimental data. Introduction of very thin binary AlN layer at the heterojunction of AlxGa1-xN/GaN resulting high mobility at high sheet charge densities by increasing the effective and decreasing alloy disorder scattering. Devices based on this structure exhibit good DC and RF performance as an increase of . Owing to high 2DEG density , the proposed device leads to operate in microwave and millimeter wave applications.


RSC Advances ◽  
2017 ◽  
Vol 7 (88) ◽  
pp. 55835-55838 ◽  
Author(s):  
Xiangzhen Ding ◽  
Bin Miao ◽  
Zhiqi Gu ◽  
Baojun Wu ◽  
Yimin Hu ◽  
...  

An extended gate-AlGaN/GaN high electron mobility transistor (EG-AlGaN/GaN HEMT) with a high sensitivity for bioassay has been developed.


Sign in / Sign up

Export Citation Format

Share Document