scholarly journals Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 826
Author(s):  
Yanting Liu ◽  
Xuming Zhang

This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.

2021 ◽  
Author(s):  
Thomas Mortelmans ◽  
Dimitrios Kazazis ◽  
Celestino Padeste ◽  
Philipp Berger ◽  
Xiaodan Li ◽  
...  

Abstract The outbreak of COVID-19 has led to a substantial death toll and has hindered the functioning of modern society, sending the world into a medical and economic crisis1,2. This underlined the importance of point-of-care diagnostics, as well as accurate, cost-effective serological antibody tests as well as point-of-care diagnostics to monitor the viral spread and contain pandemics and endemics. Here, we present a three-dimensional (3D) nanofluidic device for rapid and multiplexed detection of viral antibodies. The device is designed to size-dependently immobilize particles from a multi-particle mixture at predefined positions in nanochannels through capillary forces only, resulting in distinct trapping lines. We show that individual lines can be used as an on-chip fluorescence-linked immunosorbent assay for multiplexed detection of serological immunoglobulin antibodies against viral proteins with high sensitivity. Further device versatility is exhibited by on-bead color multiplexing for simultaneous detection of IgG and IgM antibodies in convalescent human serum and by concurrent detection of anti-spike (SARS-CoV-2) and anti-hemagglutinin (Influenza A) antibodies. The device’s applications can be further extended to detect a plethora of diseases simultaneously in a reliable and straightforward manner.


Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


NANO ◽  
2018 ◽  
Vol 13 (02) ◽  
pp. 1850022 ◽  
Author(s):  
Lishi Huang ◽  
Caihong Yuan ◽  
Wenli Chen ◽  
Fanshu Zeng ◽  
Hui Xu ◽  
...  

This study compared the susceptibility of different triangular silver nanoprisms (TSNPRs) towards the etching of hydrogen peroxide (H2O2), a catalytical product of glucose oxidase (GOx). The influence of capping agents and structural size have been explored towards the oxidation of silver nanoprisms. Results indicated that the etching of the TSNPRs was extremely effected by surface capping agents, in which citrate contributed a highest H2O2-sensitive effect in the absence of secondary capping ligands (e.g., glycerol and ethanol). Meanwhile, compared to bigger TSNPRs, smaller nanoprisms exhibited a different signal output of plasma resonance peak through intensity decrease rather than wavelength shift, making them more H2O2-etching susceptibile. In virtue of GOx etching-based system, TSNPRs with a small size and citrate capping were served as a substitute for big nanoprisms to sense glucose, offering a number of advantages such as high sensitivity, improved calibration, time-saving and extended detection ranges. Moreover, the small sized TSNPRs capping with citrate alone have been expected to be of great interest in the trace of GOx, providing an ultrahigh sensitive GOx etching-based analytical platform for point-of-care diagnostics towards other analytes (e.g., DNA, protein).


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1411 ◽  
Author(s):  
Xue Han ◽  
Kun Liu ◽  
Changsen Sun

Techniques based on plasmonic resonance can provide label-free, signal enhanced, and real-time sensing means for bioparticles and bioprocesses at the molecular level. With the development in nanofabrication and material science, plasmonics based on synthesized nanoparticles and manufactured nano-patterns in thin films have been prosperously explored. In this short review, resonance modes, materials, and hybrid functions by simultaneously using electrical conductivity for plasmonic biosensing techniques are exclusively reviewed for designs containing nanovoids in thin films. This type of plasmonic biosensors provide prominent potential to achieve integrated lab-on-a-chip which is capable of transporting and detecting minute of multiple bio-analytes with extremely high sensitivity, selectivity, multi-channel and dynamic monitoring for the next generation of point-of-care devices.


2020 ◽  
Vol 13 (05) ◽  
pp. 2041004 ◽  
Author(s):  
Yang Li ◽  
Yanxian Guo ◽  
Binggang Ye ◽  
Zhengfei Zhuang ◽  
Peilin Lan ◽  
...  

Two-dimensional (2D) nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features. Herein, 2D hafnium ditelluride (HfTe[Formula: see text], a new member of transition metal tellurides, is exploited to support gold nanoparticles fabricating HfTe2-Au nanocomposites. The nanohybrids can serve as novel 2D surface-enhanced Raman scattering (SERS) substrate for the label-free detection of analyte with high sensitivity and reproducibility. Chemical mechanism originated from HfTe2 nanosheets and the electromagnetic enhancement induced by the hot spots on the nanohybrids may largely contribute to the superior SERS effect of HfTe2-Au nanocomposites. Finally, HfTe2-Au nanocomposites are utilized for the label-free SERS analysis of foodborne pathogenic bacteria, which realize the rapid and ultrasensitive Raman test of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Salmonella with the limit of detection of 10 CFU/mL and the maximum Raman enhancement factor up to [Formula: see text]. Combined with principal component analysis, HfTe2-Au-based SERS analysis also completes the bacterial classification without extra treatment.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1563 ◽  
Author(s):  
João Batista Maia Rocha Neto ◽  
Andrey Coatrini Soares ◽  
Rogério Aparecido Bataglioli ◽  
Olívia Carr ◽  
Carlos Alberto Rodrigues Costa ◽  
...  

The increasing need for point-of-care diagnosis has sparked the development of label-free sensing platforms, some of which are based on impedance measurements with biological cells. Here, interdigitated electrodes were functionalized with layer-by-layer (LbL) films of hyaluronan (HA) and chitosan (CHI) to detect prostatic tumor cells (PC3 line). The deposition of LbL films was confirmed with atomic force microscopy and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), which featured the vibrational modes of the HA top layer capable of interacting specifically with glycoprotein CD44 receptors overexpressed in tumor cells. Though the CHI/HA LbL films cannot be considered as a traditional biosensor due to their limited selectivity, it was possible to distinguish prostate tumor cells in the range from 50 to 600 cells/µL in in vitro experiments with impedance spectroscopy. This was achieved by treating the impedance data with information visualization methods, which confirmed the distinguishing ability of the films by observing the absence of false positives in a series of control experiments. The CD44–HA interactions may, therefore, be exploited in clinical analyses and point-of-care diagnostics for cancer, particularly if computational methods are used to process the data.


2020 ◽  
Author(s):  
Abdelhadi Djaileb ◽  
Benjamin Charron ◽  
Maryam Hojjat Jodaylami ◽  
Vincent Thibault ◽  
Julien Coutu ◽  
...  

We report a surface plasmon resonance (SPR) sensor detecting nucleocapsid antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in undiluted human serum. When exposed to SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the patient population immunized against SARD-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with SARS-CoV-2 nucleocapsid recombinant protein detected anti-SARS-CoV-2 antibodies in the nanomolar range. This bioassay was performed on a portable SPR instrument in undiluted human serum and results were collected within 15 minutes of sample/sensor contact. This strategy paves the way to point-of-care and label-free rapid testing for antibodies.


Author(s):  
Abdelhadi Djaileb ◽  
Benjamin Charron ◽  
Maryam Hojjat Jodaylami ◽  
Vincent Thibault ◽  
Julien Coutu ◽  
...  

We report a surface plasmon resonance (SPR) sensor detecting nucleocapsid antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in undiluted human serum. When exposed to SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the patient population immunized against SARD-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with SARS-CoV-2 nucleocapsid recombinant protein detected anti-SARS-CoV-2 antibodies in the nanomolar range. This bioassay was performed on a portable SPR instrument in undiluted human serum and results were collected within 15 minutes of sample/sensor contact. This strategy paves the way to point-of-care and label-free rapid testing for antibodies.


Sign in / Sign up

Export Citation Format

Share Document