scholarly journals Polysaccharide Multilayer Films in Sensors for Detecting Prostate Tumor Cells Based on Hyaluronan-CD44 Interactions

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1563 ◽  
Author(s):  
João Batista Maia Rocha Neto ◽  
Andrey Coatrini Soares ◽  
Rogério Aparecido Bataglioli ◽  
Olívia Carr ◽  
Carlos Alberto Rodrigues Costa ◽  
...  

The increasing need for point-of-care diagnosis has sparked the development of label-free sensing platforms, some of which are based on impedance measurements with biological cells. Here, interdigitated electrodes were functionalized with layer-by-layer (LbL) films of hyaluronan (HA) and chitosan (CHI) to detect prostatic tumor cells (PC3 line). The deposition of LbL films was confirmed with atomic force microscopy and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), which featured the vibrational modes of the HA top layer capable of interacting specifically with glycoprotein CD44 receptors overexpressed in tumor cells. Though the CHI/HA LbL films cannot be considered as a traditional biosensor due to their limited selectivity, it was possible to distinguish prostate tumor cells in the range from 50 to 600 cells/µL in in vitro experiments with impedance spectroscopy. This was achieved by treating the impedance data with information visualization methods, which confirmed the distinguishing ability of the films by observing the absence of false positives in a series of control experiments. The CD44–HA interactions may, therefore, be exploited in clinical analyses and point-of-care diagnostics for cancer, particularly if computational methods are used to process the data.

2021 ◽  
Vol 10 ◽  
Author(s):  
Ivy Chung ◽  
Kun Zhou ◽  
Courtney Barrows ◽  
Jacqueline Banyard ◽  
Arianne Wilson ◽  
...  

In American men, prostate cancer is the second leading cause of cancer-related death. Dissemination of prostate cancer cells to distant organs significantly worsens patients’ prognosis, and currently there are no effective treatment options that can cure advanced-stage prostate cancer. In an effort to identify compounds selective for metastatic prostate cancer cells over benign prostate cancer cells or normal prostate epithelial cells, we applied a phenotype-based in vitro drug screening method utilizing multiple prostate cancer cell lines to test 1,120 different compounds from a commercial drug library. Top drug candidates were then examined in multiple mouse xenograft models including subcutaneous tumor growth, experimental lung metastasis, and experimental bone metastasis assays. A subset of compounds including fenbendazole, fluspirilene, clofazimine, niclosamide, and suloctidil showed preferential cytotoxicity and apoptosis towards metastatic prostate cancer cells in vitro and in vivo. The bioavailability of the most discerning agents, especially fenbendazole and albendazole, was improved by formulating as micelles or nanoparticles. The enhanced forms of fenbendazole and albendazole significantly prolonged survival in mice bearing metastases, and albendazole-treated mice displayed significantly longer median survival times than paclitaxel-treated mice. Importantly, these drugs effectively targeted taxane-resistant tumors and bone metastases – two common clinical conditions in patients with aggressive prostate cancer. In summary, we find that metastatic prostate tumor cells differ from benign prostate tumor cells in their sensitivity to certain drug classes. Taken together, our results strongly suggest that albendazole, an anthelmintic medication, may represent a potential adjuvant or neoadjuvant to standard therapy in the treatment of disseminated prostate cancer.


1999 ◽  
Vol 35 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Beverly D. Lyn-Cook ◽  
Themeka Rogers ◽  
Yan Yan ◽  
Ernice B. Blann ◽  
Fred F. Kadlubar ◽  
...  

2006 ◽  
Vol 26 (8) ◽  
pp. 3008-3017 ◽  
Author(s):  
Xiang Li ◽  
Bin Guan ◽  
Sam Maghami ◽  
Charles J. Bieberich

ABSTRACT Diminished expression of NKX3.1 is associated with prostate cancer progression in humans, and in mice, loss of nkx3.1 leads to epithelial cell proliferation and altered gene expression patterns. The NKX3.1 amino acid sequence includes multiple potential phosphoacceptor sites for protein kinase CK2. To investigate posttranslational regulation of NKX3.1, phosphorylation of NKX3.1 by CK2 was studied. In vitro kinase assays followed by mass spectrometric analyses demonstrated that CK2 phosphorylated recombinant NKX3.1 on Thr89 and Thr93. Blocking CK2 activity in LNCaP cells with apigenin or 5,6-dichlorobenzimidazole riboside led to a rapid decrease in NKX3.1 accumulation that was rescued by proteasome inhibition. Replacing Thr89 and Thr93 with alanines decreased NKX3.1 stability in vivo. Small interfering RNA knockdown of CK2α′ but not CK2α also led to a decrease in NKX3.1 steady-state level. In-gel kinase assays and Western blot analyses using fractionated extracts of LNCaP cells demonstrated that free CK2α′ could phosphorylate recombinant human and mouse NKX3.1, whereas CK2α′ liberated from the holoenzyme could not. These data establish CK2 as a regulator of NKX3.1 in prostate tumor cells and provide evidence for functionally distinct pools of CK2α′ in LNCaP cells.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 826
Author(s):  
Yanting Liu ◽  
Xuming Zhang

This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.


Author(s):  
Birandra K. Sinha ◽  
Hiroyuki Yamazaki ◽  
Helen M. Eliot ◽  
Erasmus Schneider ◽  
Markus M. Borner ◽  
...  

Cell Cycle ◽  
2010 ◽  
Vol 9 (20) ◽  
pp. 4190-4199 ◽  
Author(s):  
Patrick M. Brauer ◽  
Yu Zheng ◽  
Lin Wang ◽  
Angela Tyner

Sign in / Sign up

Export Citation Format

Share Document