scholarly journals Accumulation of Tetrahymena pyriformis on Interfaces

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1339
Author(s):  
Kohei Okuyama ◽  
Yukinori Nishigami ◽  
Takuya Ohmura ◽  
Masatoshi Ichikawa

The behavior of ciliates has been studied for many years through environmental biology and the ethology of microorganisms, and recent hydrodynamic studies of microswimmers have greatly advanced our understanding of the behavioral dynamics at the single-cell level. However, the association between single-cell dynamics captured by microscopic observation and pattern dynamics obtained by macroscopic observation is not always obvious. Hence, to bridge the gap between the two, there is a need for experimental results on swarming dynamics at the mesoscopic scale. In this study, we investigated the spatial population dynamics of the ciliate, Tetrahymena pyriformis, based on quantitative data analysis. We combined the image processing of 3D micrographs and machine learning to obtain the positional data of individual cells of T. pyriformis and examined their statistical properties based on spatio-temporal data. According to the 3D spatial distribution of cells and their temporal evolution, cells accumulated both on the solid wall at the bottom surface and underneath the air–liquid interface at the top. Furthermore, we quantitatively clarified the difference in accumulation levels between the bulk and the interface by creating a simple behavioral model that incorporated quantitative accumulation coefficients in its solution. The accumulation coefficients can be compared under different conditions and between different species.

2007 ◽  
Vol 19 (3) ◽  
pp. 249-258 ◽  
Author(s):  
S HENRICKSON ◽  
U VONANDRIAN

2016 ◽  
Author(s):  
Maia A. Smith ◽  
Cydney Nielsen ◽  
Fong Chun Chan ◽  
Andrew McPherson ◽  
Andrew Roth ◽  
...  

Inference of clonal dynamics and tumour evolution has fundamental importance in understanding the major clinical endpoints in cancer: development of treatment resistance, relapse and metastasis. DNA sequencing technology has made measuring clonal dynamics through mutation analysis accessible at scale, facilitating computational inference of informative patterns of interest. However, currently no tools allow for biomedical experts to meaningfully interact with the often complex and voluminous dataset to inject domain knowledge into the inference process. We developed an interactive, web-based visual analytics software suite called E-scape which supports dynamically linked, multi-faceted views of cancer evolution data. Developed using R and javascript d3.js libraries, the suite includes three tools: TimeScape and MapScape for visualizing population dynamics over time and space, respectively, and CellScape for visualizing evolution at single cell resolution. The tool suite integrates phylogenetic, clonal prevalence, mutation and imaging data to generate intuitive, dynamically linked views of data which update in real time as a function of user actions. The system supports visualization of both point mutation and copy number alterations, rendering how mutations distribute in clones in both bulk and single cell experiment data in multiple representations including phylogenies, heatmaps, growth trajectories, spatial distributions and mutation tables. E-scape is open source and is freely available to the community at large.


Lab on a Chip ◽  
2009 ◽  
Vol 9 (18) ◽  
pp. 2644 ◽  
Author(s):  
Luca Berdondini ◽  
Kilian Imfeld ◽  
Alessandro Maccione ◽  
Mariateresa Tedesco ◽  
Simon Neukom ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gopi Shah ◽  
Konstantin Thierbach ◽  
Benjamin Schmid ◽  
Johannes Waschke ◽  
Anna Reade ◽  
...  

AbstractThe coordination of cell movements across spatio-temporal scales ensures precise positioning of organs during vertebrate gastrulation. Mechanisms governing such morphogenetic movements have been studied only within a local region, a single germlayer or in whole embryos without cell identity. Scale-bridging imaging and automated analysis of cell dynamics are needed for a deeper understanding of tissue formation during gastrulation. Here, we report pan-embryo analyses of formation and dynamics of all three germlayers simultaneously within a developing zebrafish embryo. We show that a distinct distribution of cells in each germlayer is established during early gastrulation via cell movement characteristics that are predominantly determined by their position in the embryo. The differences in initial germlayer distributions are subsequently amplified by a global movement, which organizes the organ precursors along the embryonic body axis, giving rise to the blueprint of organ formation. The tools and data are available as a resource for the community.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


Cell Cycle ◽  
2010 ◽  
Vol 9 (8) ◽  
pp. 1504-1510 ◽  
Author(s):  
Ying V. Zhang ◽  
Brian S. White ◽  
David I. Shalloway ◽  
Tudorita Tumbar

Sign in / Sign up

Export Citation Format

Share Document