scholarly journals Generation of Concentration Gradients by a Outer-Circumference-Driven On-Chip Mixer

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Fumiya Koike ◽  
Toshio Takayama

The concentration control of reagents is an important factor in microfluidic devices for cell cultivation and chemical mixing, but it is difficult to realize owing to the characteristics of microfluidic devices. We developed a microfluidic device that can generate concentration gradients among multiple main chambers. Multiple main chambers are connected in parallel to the body channel via the neck channel. The main chamber is subjected to a volume change through a driving chamber that surrounds the main chamber, and agitation is performed on the basis of the inequality of flow caused by expansion or contraction. The neck channel is connected tangentially to the main chamber. When the main chamber expands or contracts, the flow in the main chamber is unequal, and a net vortex is generated. The liquid moving back and forth in the neck channel gradually absorbs the liquid in the body channel into the main chamber. As the concentration in the main chamber changes depending on the pressure applied to the driving chamber, we generated a concentration gradient by arranging chambers along the pressure gradient. This allowed for us to create an environment with different concentrations on a single microchip, which is expected to improve observation efficiency and save space.

2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


2016 ◽  
Vol 136 (6) ◽  
pp. 244-249
Author(s):  
Takahiro Watanabe ◽  
Fumihiro Sassa ◽  
Yoshitaka Yoshizumi ◽  
Hiroaki Suzuki

Author(s):  
Yoshiharu Inaguma

This article presents the friction torque in an internal gear pump and the friction force between an outer circumference of an outer rotor and a body, which causes a significant loss, has been investigated. When in use at a high pressure, the pump has a large friction torque due to the friction force acting on the outer rotor circumference. This friction force is caused by imbalanced force acting on the outer rotor. As well as by a positioning suction and a delivery port, the force can be reduced by setting a suction pressure recess in a section of the outer rotor circumference. In this study, through the measurement of the friction torque in an actual pump and the pressure distribution on the outer circumference of the outer rotor, it is investigated how the suction pressure recess can change the force acting on the outer rotor. The actual internal gear pump without the suction pressure recess has a large friction torque, and it corresponds to a large force on the outer rotor, which is calculated from the pressure distributions on the inside and outside of the outer rotor. In addition, on the basis of the measured friction torque of the test pump and the force acting on the outer rotor, calculated using the results of the pressure distribution, the coefficient of friction between the outer rotor circumference and the body can be estimated.


1970 ◽  
Vol 53 (1) ◽  
pp. 75-92
Author(s):  
RALPH I. SMITH

1. N. diversicolor from estuarine conditions in north-eastern England can be adapted to a chloride concentration in a pond water (PW) medium at least as low as 0.9 mM/l, and shows a net uptake of chloride when returned to a medium 3-10 mM/l more concentrated. But in comparable transfers after adaptation at a chloride concentration of 10 mM/l, net uptake is not measurable. 2. Net uptake of chloride is demonstrable in the lowest salinities, where coelomic chloride concentration drops below the regulatory plateau. Net uptake reaches 3.5 µM/g wet weight/h. 3. Chloride loss is well correlated with weight loss after adaptation in 10 mM/l, but poorly so after adaptation in PW, suggesting that the urine is very hypotonic to body fluid in PW, and isotonic (or less hypotonic) at environmental chloride concentrations of 10 mM/l or higher. 4. Uptake of chloride occurs against both electrical and chemical-concentration gradients over the lower third of the environmental salinity range, which is the range in which hyperosmotic and hyperionic regulation are most pronounced. 5. The electrical potential across the body wall is maximal in PW (17 mV, inside-negative), and decreases to zero in 50 % SW. 6. Chloride influx (as measured with 36Cl) is highest in SW, and decreases in proportion to chloride concentration down to 50-25% SW, rises to a secondary maximum in 10% SW or less, and decreases as fresh water is approached. 7. Urinary chloride loss is low, and proportional to external chloride concentration in higher salinities, maximal in the c. 10% SW range of salinities, and apparently decreases to a minimum in FW. This may be in part the consequence of recovery of chloride from an hypotonic urine, in part the consequence of a reduction in urine volume. Evidence for these last two possibilities will be given in the papers which follow.


2000 ◽  
Author(s):  
E. Sélard ◽  
A. Shirazi-Adl ◽  
J. P. G. Urban

Abstract The intervertebral disc consists of a water-rich extra-cellular matrix which is synthesized and maintained by its cells. The disc is the largest avascular tissue in the body with its cells lying as much as 8mm away from the blood supply. Nutrients, essential for maintaining cellular viability, diffuse through the matrix from blood supply under a concentration gradient arising from cellular demand. The oxygen concentration gradients in the intervertebral disc are investigated to examine the effects of exchange area and disc thickness on oxygen flux in the disc. The concentration gradients are computed using the two-dimensional Poisson’s equation and measured values for oxygen consumption rate and oxygen diffusion.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Wei Zhang ◽  
Bin Song ◽  
Xue Bai ◽  
Lina Jia ◽  
Li Song ◽  
...  

Controllable on-chip multimodal manipulation of micro-objects in microfluidic devices is urgently required for enhancing the efficiency of potential biomedical applications. However, fixed design and driving models make it difficult to...


Author(s):  
Reinaldo Lucas dos Santos Rosa ◽  
Antonio Carlos Seabra

This chapter provides a guide for microfluidic devices development and optimization focused on chemical analysis applications, which includes medicine, biology, chemistry, and environmental monitoring, showing high-level performance associated with a specific functionality. Examples are chemical analysis, solid phase extraction, chromatography, immunoassay analysis, protein and DNA separation, cell sorting and manipulation, cellular biology, and mass spectrometry. In this chapter, most information is related to microfluidic devices design and fabrication used to perform several steps concerning chemical analysis, process preparation of reagents, samples reaction and detection, regarding water quality monitoring. These steps are especially relevant to lab-on-chip (LOC) and micro-total-analysis-systems (μTAS). μTAS devices are developed in order to simplify analytical chemist work, incorporating several analytical procedures into flow systems. In the case of miniaturized devices, the analysis time is reduced, and small volumes (nL) can be used.


2020 ◽  
Vol 843 ◽  
pp. 132-137
Author(s):  
Asmidar Alias ◽  
Mohd Jamaludin Md Noor ◽  
Abdul Samad Abdul Rahman

Soil settlement is normally quantified using conventional soil volume change models which are solely based on the effective stress and the role of shear strength is ignored due to the difficulties to incorporate in the framework. The Rotational Multiple Yield Surface Framework (RMYSF) is a soil volume change model developed from the standpoint of the interaction between the effective stress and shear strength. RMYSF incorporates the development of mobilised shear strength within the body of the soil whenever the soil is subjected to anisotropic compression. Currently the framework has been applied to predict the soil anisotropic stress-strain behaviour at any effective stress. This paper present the enhancement of this volume change framework using normalisation of axial strain with the understanding that the failure axial strain is not unique, but increases as the effective stress increases. This technique has essentially produced a better accuracy in the prediction of the stress-strain response for Malaysian residual soils. A series of drained tri-axial tests under various effective stresses has been conducted using specimens of 50mm diameter and 100mm height and from the stress-strain curves the inherent mobilised shear strength envelopes at various axial strains have been determined. These mobilised shear strength envelopes were then applied for the prediction of the soil stress-strain response. An excellent agreement between the predicted and the actual stress-strain curves has been achieved.


2016 ◽  
Vol 78 (7-5) ◽  
Author(s):  
Kui Lin Kam ◽  
Tze Weng Ow ◽  
Wan Yong Chia ◽  
Rabia Bakhteri ◽  
Norhafizah Ramli ◽  
...  

Arrhythmia is an irregular heartbeat where the blood may not be delivered effectively throughout the body and cause sudden cardiac arrest (SCA). Immediate treatment is required to prevent SCA. However, most of the existing electrocardiogram (ECG) monitoring devices are bulky, cost expensive and lack arrhythmia detection and classification system. This paper proposes a front-end on-board graphical interface design of System-on-Chip (SoC) based arrhythmia detector which can be used as a first screening device for cardiac disease patient. The system consists of a knowledge-based arrhythmia classifier which is able to identify three types of arrhythmias which are ventricular fibrillation (VF), premature ventricular contractions (PVCs) and second-degree atrioventricular (AV) block. The system has been evaluated and benchmarked with ECG data from MIT-BIH arrhythmia database. The results show that its accuracy is up to 99.25% with a computation time of 6.385 seconds. It is highly portable and relatively inexpensive for installation in small clinics and home monitoring.  


Sign in / Sign up

Export Citation Format

Share Document