scholarly journals Site-Specific Microbial Decomposer Communities Do Not Imply Faster Decomposition: Results from a Litter Transplantation Experiment

2019 ◽  
Vol 7 (9) ◽  
pp. 349 ◽  
Author(s):  
Bani ◽  
Borruso ◽  
Matthews Nicholass ◽  
Bardelli ◽  
Polo ◽  
...  

Microbes drive leaf litter decomposition, and their communities are adapted to the local vegetation providing that litter. However, whether these local microbial communities confer a significant home-field advantage in litter decomposition remains unclear, with contrasting results being published. Here, we focus on a litter transplantation experiment from oak forests (home site) to two away sites without oak in South Tyrol (Italy). We aimed to produce an in-depth analysis of the fungal and bacterial decomposer communities using Illumina sequencing and qPCR, to understand whether local adaptation occurs and whether this was associated with litter mass loss dynamics. Temporal shifts in the decomposer community occurred, reflecting changes in litter chemistry over time. Fungal community composition was site dependent, while bacterial composition did not differ across sites. Total litter mass loss and rates of litter decomposition did not change across sites. Litter quality influenced the microbial community through the availability of different carbon sources. Additively, our results do not support the hypothesis that locally adapted microbial decomposers lead to a greater or faster mass loss. It is likely that high functional redundancy within decomposer communities regulated the decomposition, and thus greater future research attention should be given to trophic guilds rather than taxonomic composition.

Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 502 ◽  
Author(s):  
Guigang Lin ◽  
Zhengxia Chen ◽  
De-Hui Zeng

Although both living roots and mycorrhizal fungi are well known to interact with saprotrophic microbes to affect litter decomposition, their relative importance is largely unclear. Here, a two-year pot experiment was conducted with two ectomycorrhizal (Pinus elliottii and Pinus massoniana) and four arbuscular mycorrhizal (Cinnamomum camphora, Cunninghamia lanceolata, Michelia maudiae and Schima superba) subtropical tree species to evaluate the relative effects of living roots and mycorrhizal fungal hyphae on their own root litter decomposition and to test whether these effects differed between ectomycorrhizal and arbuscular mycorrhizal trees. To achieve these objectives, litterbags with 50-µm and 1-mm mesh sizes filled with root litter of a given tree species were simultaneously installed in pots planted with the same species and unplanted pots filled with composite soil for all species. Effects of living roots alone were calculated as differences in root litter decomposition between 50-µm and 1-mm mesh litterbags installed in planted pots. Mycorrhizal hyphal effects were calculated as differences in root litter decomposition between 50-µm litterbags installed in planted and unplanted pots. The presence of mycorrhizal fungal hyphae significantly reduced root litter mass loss and inhibited the activities of β-glucosidase and phenol oxidase, while effects of living roots alone were non-significant when all tree species were pooled and inconsistent at the tree species level. Mycorrhizal fungal hyphae induced decreases in root litter mass loss that were markedly related to their inhibitory effects on β-glucosidase and phenol oxidase activities. When tree species were grouped by their mycorrhizal types, non-significant differences were observed between ectomycorrhizal and arbuscular mycorrhizal trees in their living root or mycorrhizal fungal effects on root litter decomposition. These findings highlight the important roles of mycorrhizal fungi in mediating litter decomposition via interacting with saprotrophic microbes and suggest that changes in tree carbon allocation to mycorrhizal fungi owing to global change may affect soil carbon storage.


2000 ◽  
Vol 30 (7) ◽  
pp. 1136-1147 ◽  
Author(s):  
Björn Berg ◽  
Maj-Britt Johansson ◽  
Vernon Meentemeyer

We used a climatic transect of 14 stands of Norway spruce (Picea abies (L.) Karst.) at which locally collected needle litters was incubated. Our purpose was to show that climate is not necessarily the main rate-regulating factor even in a long climatic transect. The sites are found in Sweden from 56 to 66°N. There was virtually no relationship between climate (AET ranging between 371 and 545 mm) and first-year mass loss (range 19.4-32.8%). Instead, substrate quality (litter Mn concentration) explained 27% of the site-to-site variation in first-year mass loss. For the later stages of decomposition (second to fifth year), the sites could be divided into two groups; one in which lignin concentration regulated litter mass-loss rates, and one in which lignin concentration was not an important control. In this latter group, Mn concentrations were the component best correlated with litter mass loss. When combining all data, Mn concentration gave the best linear relationship. We repeated this procedure using first- to fifth-year mass-loss values and found the same pattern. We concluded that litter Mn concentrations is a key factor for Norway spruce litter decomposition because of its influence on lignin degradation and that the very early stage is short or nonexistant.


1991 ◽  
Vol 69 (7) ◽  
pp. 1449-1456 ◽  
Author(s):  
Björn Berg ◽  
Gunnar Ekbohm

The decomposition dynamics of four types of needle litter and three types of leaf litter were followed for 4 years. Mass losses and certain chemical changes were studied. Most of the nutrient-rich litters appeared to decompose relatively quickly during the first 12–18 months. After 3–4 years, however, their accumulated mass losses were lower compared with litter types that intially had lower rates. Thus the more nutrient-rich litters had considerably lower mass-loss rates in the later stages. This pattern was even more pronouced for extract-free lignocellulose: its mass-loss rate was negatively related to the lignin concentration, which increased progressively as litter decomposition proceeded. During late stages in litter with a high nitrogen content, there was also a clear negative relation between nitrogen concentration and lignin mass-loss rate, as well as between nitrogen concentration and litter mass-loss rate. By extrapolation of measured mass-loss values, maximum values for accumulated litter–mass loss were estimated. A nonlinear statistical model predicted that the proportion of mass lost through decomposition should be 50% for grey alder leaves, 54% for green leaves of white birch, and 57% for brown leaves of white birch. For Scots pine the predicted maximums for accumulated mass loss were 68% for green needles and 89% for brown needles, whereas corresponding values for lodgepole pine needles were 81% (green) and 100% (brown). Lodgepole pine is an introduced species in this system. Key words: litter, decomposition, lignin, nitrogen, maxium mass loss.


Pedobiologia ◽  
2019 ◽  
Vol 75 ◽  
pp. 38-51 ◽  
Author(s):  
Eduardo Nascimento ◽  
Filipa Reis ◽  
Filipe Chichorro ◽  
Cristina Canhoto ◽  
Ana Lúcia Gonçalves ◽  
...  

2013 ◽  
Vol 43 (12) ◽  
pp. 1127-1136 ◽  
Author(s):  
Björn Berg ◽  
Björn Erhagen ◽  
Maj-Britt Johansson ◽  
Lars Vesterdal ◽  
Mikaeel Faituri ◽  
...  

The aim of the present synthesis paper was to determine whether concentration changes and net release of manganese (Mn), as related to accumulated litter mass loss, are related to initial Mn concentration, mean annual temperature (MAT), mean annual precipitation (MAP), and tree genus or species. We also examined whether limit values for decomposition are related to initial litter Mn concentration, MAT, and MAP. We compiled 84 foliar litter decomposition studies, conducted mainly in boreal and temperate forest ecosystems, for which Mn dynamics had been well documented. Manganese concentration and amount were related to accumulated litter mass loss at each sampling time for each single study, as well as for (i) all studies combined (n = 748) and (ii) for species groups viz. Norway spruce (Picea abies (L.) Karst.) (n = 284), pine (Pinus) species (n = 330), and deciduous species (n = 214). The changes in Mn concentration with accumulated mass loss followed quadratic functions showing significantly higher Mn concentrations for Norway spruce vs. Scots pine (Pinus sylvestris L.) (p < 0.0001) and vs. deciduous species (p < 0.01), as well as significantly higher for deciduous species vs. Scots pine (p < 0.0001). Manganese release rates were different among the three species groups (p < 0.001). Still, rates were related to initial Mn concentrations (p < 0.001) for all litter types combined and for the three species groups. Norway spruce released Mn more slowly than pine and deciduous species. Rates were related to climatic factors for litter of Norway spruce and deciduous species. Limit values for all litter and for pine species separately were related to Mn (p < 0.001) and MAT (p < 0.001). For Norway spruce, limit values were related to MAT (p < 0.001) and MAP (p < 0.01). It appears that Norway spruce litter retains Mn more strongly in the litter structure, producing humus richer in Mn than does litter of pine and deciduous species.


2008 ◽  
Vol 318 (1-2) ◽  
pp. 217-228 ◽  
Author(s):  
Amalia Virzo De Santo ◽  
Anna De Marco ◽  
Angelo Fierro ◽  
Björn Berg ◽  
Flora A. Rutigliano

2015 ◽  
Vol 8 (10) ◽  
pp. 776-779 ◽  
Author(s):  
M. Francesca Cotrufo ◽  
Jennifer L. Soong ◽  
Andrew J. Horton ◽  
Eleanor E. Campbell ◽  
Michelle L. Haddix ◽  
...  

2013 ◽  
Vol 37 (4) ◽  
pp. 306-316 ◽  
Author(s):  
Wei HE ◽  
Fu-Zhong WU ◽  
Wan-Qin YANG ◽  
Qi-Qian WU ◽  
Min HE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document