scholarly journals Modulation of Campylobacter jejuni Motility, Adhesion to Polystyrene Surfaces, and Invasion of INT407 Cells by Quorum-Sensing Inhibition

2020 ◽  
Vol 8 (1) ◽  
pp. 104 ◽  
Author(s):  
Katarina Šimunović ◽  
Dina Ramić ◽  
Changyun Xu ◽  
Sonja Smole Možina

Campylobacter jejuni is a major foodborne pathogen, and the LuxS-mediated quorum-sensing (QS) system influences its motility, biofilm formation, invasion, host colonization, and virulence. QS therefore represents a target for the control of C. jejuni. The aim of this study was to investigate the correlation of QS inhibition with changes in C. jejuni motility, adhesion to polystyrene surfaces, and adhesion to and invasion of INT407 cells. This was achieved by studying (i) the luxS-deficient mutant and (ii) treatment of C. jejuni with 20 natural extracts as six essential oils, 11 ethanolic extracts, and three pure compounds. Compared to the wild-type, the ΔluxS mutant showed decreased motility, adhesion to polystyrene surfaces, and invasion of INT407 cells. The anti-QS effects of the treatments (n = 15/20) were assayed using Vibrio harveyi BB170 bioluminescence. Moderate positive correlation was shown between C. jejuni QS reduction and reduced motility (τ = 0.492, p = 0.024), adhesion to polystyrene surfaces (τ = 0.419, p = 0.008), and invasion (r = 0.394, p = 0.068). The best overall effect was achieved with a Sedum rosea (roseroot) extract, with 96% QS reduction, a 1.41 log (96%) decrease in adhesion to polystyrene surfaces, and an 82% decrease in invasion. We show that natural extracts can reduce motility, adhesion to polystyrene surfaces, and invasion of INT407 cells by C. jejuni through modulation of the LuxS (QS) system.

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 80 ◽  
Author(s):  
Kulwadee Karnjana ◽  
Saksit Nobsathian ◽  
Chumporn Soowannayan ◽  
Wei Zhao ◽  
Ya-Jie Tang ◽  
...  

Previously, we reported that the ethanol extract from red seaweed Gracilaria fisheri effectively decreased biofilm formation of Vibrio harveyi. In this study, the anti-biofilm active compounds in the ethanol extract were isolated and their structures identified. The anti-biofilm fractionation assay for minimum inhibitory concentration (MIC) produced two fractions which possessed maximal inhibitory activities toward the biofilm formation of V. harveyi strains 1114 and BAA 1116. Following chromatographic separation of the bioactive fractions, two pure compounds were isolated, and their structures were elucidated using FTIR, NMR, and HR-TOF-MS. The compounds were N-benzyl cinnamamide and α-resorcylic acid. The in vitro activity assay demonstrated that both compounds inhibited the biofilm formation of V. harveyi and possessed the anti-quorum sensing activity by interfering with the bioluminescence of the bacteria. However, the N-benzyl cinnamamide was more potent than α-resorcylic acid with a 10-fold lesser MIC. The present study reveals the beneficial property of the N-benzyl cinnamamide from the ethanol extract as a lead anti-microbial drug against V. harveyi.


2016 ◽  
Vol 198 (19) ◽  
pp. 2643-2650 ◽  
Author(s):  
Boo Shan Tseng ◽  
Charlotte D. Majerczyk ◽  
Daniel Passos da Silva ◽  
Josephine R. Chandler ◽  
E. Peter Greenberg ◽  
...  

ABSTRACTMembers of the genusBurkholderiaare known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterizedBurkholderia thailandensisbiofilm development under flow conditions and sought to determine whether QS contributes to this process.B. thailandensisbiofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS.B. thailandensishas three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the threeB. thailandensisQS systems, we show that QS-1 is required for proper biofilm development, since abtaR1mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. ThebtaR1mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions.IMPORTANCEThe saprophyteBurkholderia thailandensisis a close relative of the pathogenic bacteriumBurkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms,B. thailandensisis an ideal model organism for investigating questions inBurkholderiaphysiology. In this study, we characterizedB. thailandensisbiofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows thatB. thailandensisproduces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience ofB. thailandensisbiofilms against changes in the nutritional environment.


Biofilms ◽  
2004 ◽  
Vol 1 (2) ◽  
pp. 91-99 ◽  
Author(s):  
S. R. Schooling ◽  
U. K. Charaf ◽  
D. G. Allison ◽  
P. Gilbert

Biofilms are often considered as localized zones of high cell density. Quorum sensing provides a means for control of population processes and has been implicated in the regulation of biofilm activities. We present a role for quorum sensing in programmed detachment and dispersal processes. Biofilms of Pseudomonas aeruginosa PAO1 and its isogenic homoserine lactone (HSL) mutant P. aeruginosa PAO-JP2 were grown in batch culture on glass substrata; differences were found in the rate and extent of formation of biofilm. Climax communities were observed for PAO1 at 24 h. These were later accompanied by foaming, a drop in the surface tension of culture media and dispersal of the biofilm, after which no subsequent biofilm accretion occurred. PAO-JP2 cultures reformed biofilm post-detachment and did not foam. Prevention of biofilm reformation in the wild type was related to some component excreted into the culture medium. Rhamnolipid, a biosurfactant regulated by quorum sensing, was detected in PAO1 cultures. When rhamnolipid was added to freshly inoculated substrata, biofilm formation was inhibited. At 20 h, PAO1 biofilms were transferred to medium with added rhamnolipid: biofilm was relatively unaffected. Biofilm events were also studied in medium supplemented with N-butyryl-L-homoserine lactone, which is involved in the regulation of rhamnolipid synthesis. Both strains exhibited similar trends of rapid biofilm formation and dramatic changes in the rate and extent of biofilm accretion. In both cases, there was premature foaming, lowered surface tension and elevated rhamnolipid levels. A role for HSLs in maintenance of biofilm and events leading to dispersion of cells is proposed. This role would encompass dispersion but not necessarily detachment of cells from biofilm and supports a new function for rhamnolipid in pathogenesis, whereby rhamnolipid would promote the dissemination of cells from a nidus of infection.


2006 ◽  
Vol 72 (8) ◽  
pp. 5653-5658 ◽  
Author(s):  
Shlomo Sela ◽  
Shmulik Frank ◽  
Eddy Belausov ◽  
Riky Pinto

ABSTRACT Using a Vibrio harveyi reporter strain, we demonstrated that Listeria monocytogenes secretes a functional autoinducer 2 (AI-2)-like signal. A luxS-deficient mutant produced a denser biofilm and attached to a glass surface 19-fold better than the parent strain. Exogenous AI-2 failed to restore the wild-type phenotype to the mutant. It seems that an intact luxS gene is associated with repression of components required for attachment and biofilm formation.


2017 ◽  
Vol 30 (7) ◽  
pp. 557-565 ◽  
Author(s):  
Ana Zúñiga ◽  
Raúl A. Donoso ◽  
Daniela Ruiz ◽  
Gonzalo A. Ruz ◽  
Bernardo González

Quorum-sensing systems play important roles in host colonization and host establishment of Burkholderiales species. Beneficial Paraburkholderia species share a conserved quorum-sensing (QS) system, designated BraI/R, that controls different phenotypes. In this context, the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN possesses two different homoserine lactone QS systems BpI.1/R.1 and BpI.2/R.2 (BraI/R-like QS system). The BpI.1/R.1 QS system was previously reported to be important to colonize and produce beneficial effects in Arabidopsis thaliana plants. Here, we analyzed the temporal variations of the QS gene transcript levels in the wild-type strain colonizing plant roots. The gene expression patterns showed relevant differences in both QS systems compared with the wild-type strain in the unplanted control treatment. The gene expression data were used to reconstruct a regulatory network model of QS systems in P. phytofirmans PsJN, using a Boolean network model. Also, we examined the phenotypic traits and transcript levels of genes involved in QS systems, using P. phytofirmans mutants in homoserine lactone synthases genes. We observed that the BpI.1/R.1 QS system regulates biofilm formation production in strain PsJN and this phenotype was associated with the lower expression of a specific extracytoplasmic function sigma factor ecf26.1 gene (implicated in biofilm formation) in the bpI.1 mutant strain.


2003 ◽  
Vol 71 (4) ◽  
pp. 1972-1979 ◽  
Author(s):  
Justin Merritt ◽  
Fengxia Qi ◽  
Steven D. Goodman ◽  
Maxwell H. Anderson ◽  
Wenyuan Shi

ABSTRACT Quorum sensing is a bacterial mechanism for regulating gene expression in response to changes in population density. Many bacteria are capable of acyl-homoserine lactone-based or peptide-based intraspecies quorum sensing and luxS-dependent interspecies quorum sensing. While there is good evidence about the involvement of intraspecies quorum sensing in bacterial biofilm, little is known about the role of luxS in biofilm formation. In this study, we report for the first time that luxS-dependent quorum sensing is involved in biofilm formation of Streptococcus mutans. S. mutans is a major cariogenic bacterium in the multispecies bacterial biofilm commonly known as dental plaque. An ortholog of luxS for S. mutans was identified using the data available in the S. mutans genome project (http://www.genome.ou.edu/smutans.html ). Using an assay developed for the detection of the LuxS-associated quorum sensing signal autoinducer 2 (AI-2), it was demonstrated that this ortholog was able to complement the luxS negative phenotype of Escherichia coli DH5α. It was also shown that AI-2 is indeed produced by S. mutans. AI-2 production is maximal during mid- to late-log growth in batch culture. Mutant strains devoid of the luxS gene were constructed and found to be defective in producing the AI-2 signal. There are also marked phenotypic differences between the wild type and the luxS mutants. Microscopic analysis of in vitro-grown biofilm structure revealed that the luxS mutant biofilms adopted a much more granular appearance, rather than the relatively smooth, confluent layer normally seen in the wild type. These results suggest that LuxS-dependent signal may play an important role in biofilm formation of S. mutans.


2006 ◽  
Vol 72 (11) ◽  
pp. 7294-7300 ◽  
Author(s):  
Pieter Moons ◽  
Rob Van Houdt ◽  
Abram Aertsen ◽  
Kristof Vanoirbeek ◽  
Yves Engelborghs ◽  
...  

ABSTRACT We have previously characterized the N-acyl-l-homoserine lactone-based quorum-sensing system of the biofilm isolate Serratia plymuthica RVH1. Here we investigated the role of quorum sensing and of quorum-sensing-dependent production of an antimicrobial compound (AC) on biofilm formation by RVH1 and on the cocultivation of RVH1 and Escherichia coli in planktonic cultures or in biofilms. Biofilm formation of S. plymuthica was not affected by the knockout of splI or splR, the S. plymuthica homologs of the luxI or luxR quorum-sensing gene, respectively, or by the knockout of AC production. E. coli grew well in mixed broth culture with RVH1 until the latter reached 8.5 to 9.5 log CFU/ml, after which the E. coli colony counts steeply declined. In comparison, only a very small decline occurred in cocultures with the S. plymuthica AC-deficient and splI mutants. Complementation with exogenous N-hexanoyl-l-homoserine lactone rescued the wild-type phenotype of the splI mutant. The splR knockout mutant also induced a steep decline of E. coli, consistent with its proposed function as a repressor of quorum-sensing-regulated genes. The numbers of E. coli in 3-day-old mixed biofilms followed a similar pattern, being higher with S. plymuthica deficient in SplI or AC production than with wild-type S. plymuthica, the splR mutant, or the splI mutant in the presence of N-hexanoyl-l-homoserine lactone. Confocal laser scanning microscopic analysis of mixed biofilms established with strains producing different fluorescent proteins showed that E. coli microcolonies were less developed in the presence of RVH1 than in the presence of the AC-deficient mutant.


2021 ◽  
Author(s):  
Mario López-Martín ◽  
Jean-Frédéric Dubern ◽  
Morgan R. Alexander ◽  
Paul Williams

Acinetobacter baumannii possesses a single divergent luxR/luxI-type quorum sensing (QS) locus named abaR/abaI. This locus also contains a third gene located between abaR and abaI which we term abaM that codes for an uncharacterized member of the RsaM protein family known to regulate N-acylhomoserine lactone (AHL) dependent QS in other β- and γ-proteobacteria. Here we show that disruption of abaM via a T26 insertion in A. baumannii strain AB5075 resulted in increased production of N-(3-hydroxydodecanoyl)-L-homoserine lactone (OHC12) and enhanced surface motility and biofilm formation. In contrast to the wild type and abaI::T26 mutant, the virulence of the abaM::T26 mutant was completely attenuated in a Galleria mellonella infection model. Transcriptomic analysis of the abaM::T26 mutant revealed that AbaM differentially regulates at least 76 genes including the csu pilus operon and the acinetin 505 lipopeptide biosynthetic operon, that are involved in surface adherence, biofilm formation and virulence. A comparison of the wild type, abaM::T26 and abaI::T26 transcriptomes, indicates that AbaM regulates ∼21% of the QS regulon including the csu operon. Moreover, the QS genes (abaI/abaR) were among the most upregulated in the abaM::T26 mutant. A. baumannii lux-based abaM reporter gene fusions revealed that abaM expression is positively regulated by QS but negatively auto-regulated. Overall, the data presented in this work demonstrates that AbaM plays a central role in regulating A. baumannii QS, virulence, surface motility and biofilm formation. Importance Acinetobacter baumanni is a multi-antibiotic resistant pathogen of global healthcare importance. Understanding Acinetobacter virulence gene regulation could aid the development of novel anti-infective strategies. In A. baumannii, the abaR and abaI genes that code for the receptor and synthase components of an N-acylhomoserine (AHL) lactone-dependent quorum sensing system (QS) are separated by abaM. Here we show that although mutation of abaM increased AHL production, surface motility and biofilm development, it resulted in the attenuation of virulence. AbaM was found to control both QS-dependent and QS-independent genes. The significance of this work lies in the identification of AbaM, an RsaM ortholog known to control virulence in plant pathogens, as a modulator of virulence in a human pathogen.


2018 ◽  
Author(s):  
Mark Reuter ◽  
Eveline Ultee ◽  
Yasmin Toseafa ◽  
Andrew Tan ◽  
Arnoud H.M. van Vliet

ABSTRACTFlagellar motility plays a central role in the bacterial foodborne pathogen Campylobacter jejuni, as flagellar motility is required for reaching the intestinal epithelium and subsequent colonisation or disease. Flagellar proteins also contribute strongly to biofilm formation during transmission. Chemotaxis is the process directing flagellar motility in response to attractant and repellent stimuli, but its role in biofilm formation of C. jejuni is not well understood. Here we show that inactivation of the core chemotaxis genes cheVAWY in C. jejuni strain NCTC 11168 affects both chemotactic motility and biofilm formation. Inactivation of any of the core chemotaxis genes (cheA, cheY, cheV or cheW) impaired chemotactic motility but did not affect flagellar assembly or growth. The ΔcheY mutant swam in clockwise loops, while complementation restored normal motility. Inactivation of the core chemotaxis genes interfered with the ability to form a discrete biofilm at the air-media interface, and the ΔcheY mutant displayed reduced dispersal/shedding of bacteria into the planktonic fraction. This suggests that while the chemotaxis system is not required for biofilm formation per se, it is necessary for organized biofilm formation. Hence interference with the Campylobacter chemotaxis system at any level disrupts optimal chemotactic motility and transmission modes such as biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document